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The modi®cations of the kinematical and extinction-corrected intensity pro®les

caused by the divergence of the incident synchrotron-radiation beam and the

diffraction by the monochromator system are considered. Expressions for the

integral width as well as the full width at half-maximum are presented and

discussed. The theoretical results are compared with observations.

1. Introduction

In Ro-02,1 the dynamical, kinematical and extinction-

corrected intensity pro®les of perfect crystals were considered.

In the present paper, the modi®cation of these pro®les due to

the experimental conditions of a measurement with synchro-

tron radiation will be analysed, directing attention on the

width and shape of the intensity distributions of a perfect

spherical crystal. In x2, expressions for the shapes, the integral

width and the full width at half-maximum (FWHM) of the

kinematical (x2.1) and extinction-corrected pro®les (x2.2) are

given. The modi®cation of the pro®le shape caused by the

characteristics of the synchrotron radiation at the beamline

D3 at HASYLAB, DESY, considering the monochromator

system in the framework of the kinematical theory, is

discussed in x3. In x4, the corresponding results derived in the

framework of the dynamical theory are presented. In x5, the

theoretical intensity pro®les are compared with pro®les of a

spherical perfect Si sample, measured with synchrotron

radiation at six different wavelengths.

2. Intensity distribution functions for a perfect
spherical crystal. Monochromatic parallel incident
beam

2.1. The kinematical profile

Using the abbreviation 1=� � r0�jFjK=Vcell, where � is the

extinction length, r0 is the classical electron radius, � is the

wavelength of the radiation used for diffraction, F is the

structure factor, Vcell is the volume of the unit cell, K is the

polarization coef®cient equal to 1 and jcos 2�j for the parallel

and the perpendicular component of the X-ray electric ®eld,

respectively, and � is the Bragg angle, the intensity Ikin
sphere for a

particular ! step of a perfect spherical crystal with radius r can

be expressed as [Ro-02-(19)]

Ikin
sphere � �I0q�Rkin

sphere � �I0q� 4
3 �r=�2�f ���; �1�

where I0 is the incident intensity, q = 2r2� is the cross section

of the sphere and Rkin
sphere is the kinematical re¯ectivity. The

normalized intensity distribution function f(�) can be

approximated by

f ��� � ���integral�ÿ1�1� 8��r��2 ÿ cos�4�r��
ÿ 4�r� sin�4�r���=�32��r��4�; �2�

where

��integral � 2=�3r� �3�
is the integral width of the pro®les (1) and (2). Expressing the

distance of the particular reciprocal-lattice point from the

Ewald sphere in the direction of the re¯ected beam, �, in terms

of the rotation angle ! [see Ro-00a-(12)]

��!� � �1=�2 � jhj2 ÿ 2jhj sin!=��1=2 ÿ 1=�; �4�
we obtain the !-scan pro®le. In (4), jhj is the length of the

reciprocal-lattice vector h corresponding to the reciprocal-

lattice point H. For intermediate Bragg angles, the integral

width of the kinematical intensity pro®le, �!integral, can be

approximated by [Ro-00a-(16)]

�!integral � ��integral�= sin 2� � 2�=�3r sin 2��; �5�
whereas the corresponding FWHM, �!FWHM, calculated by

means of Mathematica (Wolfram, 1999), is given by

�!FWHM � 0:55333�=�r sin 2��: �6�
In Fig. 1, the normalized pro®le (2), represented as a function

of ! (in degrees) for � = 0.51 AÊ , r = 1 mm and � = 5�, is

compared with the Gaussian, IG, as well as the Lorentzian

distribution, IL, having the same area (= 1) and the same

integral width, �!integral � 0:0112�:

IG�!� � expfÿ����!�=��integral�2g=�!integral

IL�!� � 1=f1� ����!�=��integral�2g=�!integral:
�7�

1 Some of the expressions and ®gures discussed in this paper were derived or
presented in previous papers of the author (Rossmanith, 1993a,b, 2000a,b,
2002). These expressions and ®gures will be referenced in the following by the
abbreviation Ro-xxy-(z), where xx represents the two last digits of the year of
publication, y stands for a, b, c etc. if more than one paper in the respective
year is referenced and z represents the number of the expression or ®gure
under consideration.
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It is obvious from the ®gure that neither the Gaussian nor the

Lorentzian distribution is an adequate approximation for the

kinematical intensity pro®le. Furthermore, the form factor

� � �!FWHM=�!integral � 0:83 of the kinematical intensity

pro®le differs signi®cantly from the form factors of the

Gaussian, �G � 0:94, as well as the Lorentzian distribution,

�L � 0:64 [see expressions (39) and (42) in Appendix A].

2.2. Extinction-corrected profiles

Extinction-corrected intensity pro®les, Iext
sphere, derived in the

framework of the kinematical theory for spherical crystals are

given by Becker & Coppens (1974), here referred to as B&C

[see also Ro-02-(18)]. Unfortunately, a closed form of the

re¯ectivity Rext
sphere � Iext

sphere=�I0q� could be given by B&C only

for 2� = 0� (B&C.31) and 2� = 180� (B&C.32):

Rext
sphere�2� � 180�� � 1ÿ 4=�3Rkin

sphere�f1ÿ �ln�1� 3Rkin
sphere=2��

� �3Rkin
sphere=2�ÿ1g

Rext
sphere�2� � 0�� � 1

2ÿ 1=�3Rkin
sphere�2 � exp�ÿ3Rkin

sphere�=�3Rkin
sphere�

� exp�ÿ3Rkin
sphere�=�3Rkin

sphere�2: �8�

It will therefore be assumed in the following that for inter-

mediate values of 2� the pro®le can be calculated in a very ®rst

approximation according to

Rext
sphere��� � fRext

sphere�2� � 0��g�90ÿ ��=90

� fRext
sphere�2� � 180��g�=90: �9�

2.2.1. Intensity profiles obtained with the 'pull-down
procedure'. The extinction-corrected pro®les (8) are

presented in Fig. 8 of Ro-02 for various 4r=3� = �tin=� ratios.

The pro®les are obtained by pulling down the `reciprocal-

lattice sphere' in the direction of the diffracted beam from

outside to inside the Ewald sphere, i.e. the intensity is calcu-

lated as a function of �. It is obvious from this ®gure that for

small �tin=� ratios the two pro®les are very similar and differ

only marginally in their maximum values. With increasing
�tin=� ratio, the two pro®les differ more and more. The

maximum value of the re¯ectivity for back re¯ection (2� =

180�) approaches the value 1, whereas for the forward

re¯ection (2� = 0�) the value 1=2 is obtained.

In Fig. 2(a), the black full lines show the integral widths

versus the radius r of the sample, calculated according to

��r=�
integral �

R
Rext

sphere d�=Rext
sphere�� � 0� �10�

with � = 1 (r and � in arbitrary units) for 2� = 0� (upper

curve) and 2� = 180� (lower curve).

These widths are compared with the approximations

(dashed red lines)

��r=�
integral�2� � 180�� � �2=�3r���1� �1:03r=��2�1=2 ) 0:7=�

��r=�
integral�2� � 0�� � �2=�3r���1� �1:64r=��2�1=2 ) 1:1=�;

�11�

Figure 1
Black pro®le: the normalized intensity distribution function, equation (2),
represented as a function of !. � = 0.51 AÊ , r = 1 mm and � = 5�. Blue
dashed (red chain-dotted) pro®le: the Gaussian distribution, IG,
(Lorentzian distribution, IL) having the same area (= 1) and the same
integral width as the black pro®le.

Figure 2
The widths of the pro®les (8) for 2� = 0� (upper curves) and 2� = 180�

(lower curves) versus the radius r of the sample, � = 1, r and � in
arbitrary units. (a) ��r=�

integral: black full lines, expression (10); red dashed
lines, approximations (11). (b) ��r=�

FWHM: black full lines, FWHMs of the
pro®les (8); red dashed lines, approximations (12); red chain-dotted line,
the constant 1.03 in (12) is replaced by 1.



where the constants c1 = 1.64 (2� = 0�) and c1 = 1.03 (2� = 180�)
were obtained by ®tting the results of (11) to (10) for large

r=� ratios. For small r=� ratios, both expressions (11)

approach the kinematical integral width (3), whereas for large

r=� ratios the integral width of the extinction-corrected

pro®les can be expressed as ��r=�
integral � c1�2=�3���. For inter-

mediate r=� ratios, however, the results of (11) deviate

slightly from the results of (10).

The FWHMs of the pro®les, ��r=�
FWHM, are presented as full

black lines in Fig. 2(b). The saw-toothed appearance of the

FWHMs versus r lines is easily explained by the oscillations of

the corresponding intensity distributions [see Fig. 1, Fig. 3(a)

and Ro-02-Fig. 8]. In Fig. 3, the extinction-corrected pro®les

(8) (black full lines) are compared with a Gaussian (blue

dashed lines) and a Lorentzian distribution (red dashed lines),

respectively, having the integral width de®ned by expression

(11) for 2� = 180�. It can be deduced from Fig. 3 that in the

case of back re¯ection and increasing extinction the Lorent-

zian distribution becomes a fairly good approximation for the

extinction-corrected intensity pro®le obtained with the `pull-

down procedure'. Bearing in mind that for a Lorentzian

distribution the FWHM is related to the integral width by the

form factor 2=� and that in the case 2� = 0� and large r=�
ratios the maximum of the extinction-corrected pro®le is

limited to the value I���ext
sphere=�I0q� � 1=2, it can be concluded

that the width, ��r=�
FWHM, of this pro®le is about the width of the

Lorentzian at IL���=�I0q� � 1=4. Therefore, it can easily be

shown that for large r=� ratios

��r=�
FWHM�2� � 180�� � �2=���2=�3r���1� �1:03r=��2�1=2

) 0:44=�

��r=�
FWHM�2� � 0�� � �2=���2=�3r���1� 3�1:03r=��2�1=2

) 0:76=� �12�
(red dashed lines in Fig. 2b). The red chain-dotted line in Fig.

2(b) is obtained by replacing in (12) the constant 1.03 by 1. It is

obvious from the ®gure that, for 2� = 180� and large r=� ratios,

the exact FWHM lies between these two approximations.

In Fig. 4, the black full lines represent the pro®les for

intermediate Bragg angles calculated according to expression

(9) [Figs. 4(a), (b), (c): � = 85, 45, 5�, r=� = 3; Fig. 4(d): � = 5�,
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Figure 3
Rext

sphere versus � [(units of r)ÿ1]. Black full lines: the extinction-corrected
pro®les (8). Blue (red) dashed lines: the Gaussian (Lorentzian)
distribution having the integral width de®ned by expression (11) for
2� = 180�. (a) r=� = 3. (b) r=� = 30.

Figure 4
Rext

sphere versus � for intermediate Bragg angles. Black full pro®les:
calculated according to expression (9). Red dashed lines: pseudo-Voigt
distributions de®ned by (13) with FWHMs calculated according to (14).
(a) � = 85�, r=� = 3, �= 0.95. (b) � = 45�, r=� = 3, �= 0.85. (c) � = 5�, r=� =
3, � = 0.80. (d) � = 5�, r=� = 30, � = 0.80.
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r=� = 30]. The red dashed lines in the ®gures are pseudo-Voigt

distributions [see expression (44) in Appendix A], RPV,

de®ned by

RPV � Rext
sphere�� � 0���1ÿ ��GN � �LN�; �13�

where � is the mixing parameter giving the proportion of the

Lorentzian contributions. The FWHM of these pseudo-Voigt

distributions, which is equal to the FWHM of the contributing

normalized Gaussian, GN, and Lorentzian, LN, is calculated

according to

��r=�
FWHM��� � f��r=�

FWHM�2� � 0��g�90ÿ ��=90

� f��r=�
FWHM�2� � 180��g�=90: �14�

It is obvious from Figs. 4(a), (b) and (c) that the mixing

parameter � depends on the Bragg angle [Figs. 4(a), (b), (c),

(d): � = 0.95, 0.85, 0.80, 0.80] and that ± even for � � 5� ± the

pseudo-Voigt function calculated according to (13) and (14) is

a reasonable approximation for the pro®les (9).

2.2.2. Intensity profiles obtained with the x-scanning
technique. It should once more be emphasized that the

pro®les de®ned for intermediate Bragg angles by (9) are only

very ®rst approximations proposed in this paper. However,

using these approximations, it can easily be shown that for

intermediate Bragg angles the extinction-corrected !-scan

pro®le is equivalent in shape to that obtained during the `pull-

down procedure'. The pro®les differ only in their abscissae

and the dimension of the corresponding variable. The

equivalence is caused by the linearity of the relation between

! and �, represented as a blue dashed line in Fig. 5, i.e. in the

range represented in Fig. 5(a), � decreases linearly from +3 �
10ÿ4 to ÿ3 � 10ÿ4 [AÊ ÿ1] during the ! scan from outside to

inside the Ewald sphere. The black full line in Fig. 5(a)

corresponds to the pro®le (9), calculated with the �±! relation

de®ned by (4) for r=� = 30, � = 1 mm, � = 0.51 AÊ , � = 45� and

� = 0.85. The red dashed line represents the pseudo-Voigt

distribution (13) with the FWHM de®ned by

�!r=�
FWHM � ��r=�

FWHM����=sin 2�: �15�
From the very good ®t between the pro®le (9) and the pseudo-

Voigt distribution, it can be concluded that (15) is a reasonable

approximation for the FWHM of the extinction-corrected

!-scan pro®les.

On the other hand, it should be noted that it is impossible to

observe the `closed-form' pro®les, expressions (8), given by

B&C for 2� = 0 and 2� = 180� only, with the !-scanning

technique. Besides the fact that in both cases the re¯ected

beam coincides with the incident beam, in the ± unfeasible ±

case 2� = 0�, the reciprocal-lattice point would coincide with

the zero point of the reciprocal lattice, i.e. it would lie on the !
axis. Consequently, the re¯ected intensity would be constant

during rotation (� will be zero for all !). In the vicinity of 2� =

180�, the relation between ! and � is no longer linear (blue

dashed line in Fig. 5b). The !-scan pro®le (black line)

becomes asymmetric and deviates strongly from that obtained

with the `pull-down' procedure, which will be very similar to

that given in Fig. 3(b) for 2� = 180�.

3. Intensity distribution functions for a perfect
spherical crystal. Kinematical diffraction by a triple-
crystal system at a synchrotron-radiation source

In a `real experiment', the incident beam is neither exactly

monochromatic nor exactly parallel. The wavelength spread

and the divergence parallel and normal to the re¯ection plane

of the primary re¯ection are caused by the X-ray source and

the monochromator system as well as the diameter of the

sample. The arrangement of the triple-crystal system used

at the synchrotron-radiation source at beamline D3 at

HASYLAB (DESY, Hamburg, Germany) was discussed in

detail in Ro-93a. For simplicity, the monochromator system

was considered in the framework of the kinematical theory, i.e.

it was assumed that the reciprocal-lattice points corresponding

to the 'very thick' perfect monochromator crystals (I and II in

Fig. 6; see also Ro-93a-Figs. 1 and 2 and corresponding text)

can be represented by dimensionless mathematical points.

Consequently, kinematical diffraction is possible for � = 0 only,

i.e. the re¯ecting planes of the two monochromator crystals

both have to be exactly in Bragg position. It was shown in

Figure 5
Intensity pro®les obtained with the ! scanning technique. Blue dashed
line: � [mmÿ1] versus ! [�]. Black full line: pro®le (9) calculated with the �±
! relation de®ned by (4) for r=� = 30, � = 1 mm, � = 0.51 AÊ . Red dashed
line: pseudo-Voigt distribution (13) with the FWHM de®ned by (15). (a) �
= 45� and � = 0.85. (b) � = 89.6� and � = 0.80.



Ro-93a that each ray diffracted by the planes of the two

perfect monochromator crystals parallel to the re¯ection

plane will have its characteristic wavelength, �M
�p

, depending on

the angle �M
p between the particular ray and the central ray,

��M
p
� 2dM sin��M � �M

p �; �16�

where dM is the interplanar spacing of the re¯ecting plane of

the monochromator crystals and �M is the Bragg angle for the

central ray. The measurements can be performed with the

samples arranged antiparallel (position IIIa in Fig. 6) or

parallel (position IIIb) with respect to the second mono-

chromator crystal. Consequently, in the antiparallel arrange-

ment, rays diffracted by the second monochromator crystal

with negative �M
p and smaller wavelength (��M

p
<��M

p �0) will

correspond to a positive angle, �S
p, between the particular ray

and the central ray at the sample and vice versa, i.e. �S
p � ÿ�M

p .

The opposite sign is obtained for the parallel arrangement.

The corresponding wavelengths �� �� are therefore related

to the �S
p according to

�� �� � ��S
p
� 2dM sin��M � �S

p� �17�

with the minus (plus) sign corresponding to the antiparallel

(parallel) arrangement.

Furthermore, it was shown in Ro-00b-Appendix A-(30)

that, for a particular setting of the diffractometer angle ! and

a particular incident ray with wavelength ��S
p
, divergences �n

(normal) and �S
p (parallel to the re¯ection plane), !-scan

pro®les of the sample in positions IIIa, IIIb in Fig. 6 can be

calculated, replacing � given in (4) by

��!; �n; �p� � ÿ1=��S
p
� �1=�2

�S
p
� jhj2 ÿ 2jhj cos �n

� cos�90ÿ !ÿ �S
p�=��S

p
�1=2; �18�

taking into account the probability P��n; �
S
p� d�n d�S

p for this

particular ray of the beam incident on the ®rst mono-

chromator crystal.

For example, in the case of purely kinematical diffraction

and �n = 0, the total intensity recorded in the counter for a

particular diffractometer angle ! has to be evaluated by

I�!� � R Ikin
sphere�!; �S

p�P��S
p� d�S

p; �19�
where Ikin

sphere is de®ned by (1). According to Ro-93a-Fig. 3(a),

the maximum divergence � recorded by a spherical crystal

bathed in the incident beam depends solely on geometrical

factors and is independent of the wavelength

� � 2 arctan��s=2� r�=L�; �20�
where s is the vertical dimension of the synchrotron-radiation

source and L is the distance between the source and the

sample (s = 0.11 cm and L = 3731 cm at beamline D3 at

HASYLAB, � � 0:00195�). Without the two monochromator

crystals in the beam, in the case that the sample radius r is

much smaller than s, the distribution function P��S
p� will be

nearly rectangular in shape, with constant probability for all

the rays with �S
p � � and zero probability for rays with �S

p >�.
In this section, i.e. in the framework of the kinematical theory,

it will be assumed that the rectangular distribution function is

smeared by the monochromator system, caused for example

by imperfections in the crystals or by the fact that the corre-

sponding reciprocal-lattice points are not exactly dimension-

less mathematical points. The results represented in Fig. 7 are

therefore obtained by replacing the rectangular distribution

function by a Gaussian, PG, in Fig. 7(a) and a Lorentzian

distribution, PL, in Fig. 7(b), having the area, the maximum

value and the integral width of a rectangular distribution:

PG��S
p� � �1=�� exp�ÿ���S

p=��2�
PL��S

p� � �1=���1� ���S
p=��2�ÿ1:

�21�

It should be noticed that (19) is not the convolution of the two

distribution functions Ikin
sphere and P. This can easily be

demonstrated by replacing the normalized function f in (1) by

the normalized distribution functions de®ned in (7). In Fig.

7(a), f is replaced by the Gaussian, IG, in Fig. 7(b) by the

Lorentzian distribution, IL. For the sake of comparability of

the width and shapes of the pro®les, the intensities of all

pro®les in Fig. 7 are divided by the corresponding maximum

value. It is obvious from the ®gures that the two black pro®les

obtained according to (19) for the two sample positions IIIa

and IIIb (Fig. 6) differ appreciably in width for the Gaussian

distributions Ikin
sphere and P (Fig. 7a) as well as the Lorentian

distributions (Fig. 7b). The same width, however, would be

obtained for both positions in the case of a convolution,

represented by the red dashed pro®les. In the case of Fig. 7(a),

the convolution results in a Gaussian and in the case of Fig.

7(b) in a Lorentzian distribution, with the FWHMs calculable

according to

�!FWHM;G � �Gf�2=�3r���= sin 2���2 � �2g1=2

�!FWHM;L � �L�2=�3r���= sin 2�� � ��: �22�

On the other hand, according to expression Ro-93b-(6b),

which is based on purely geometrical considerations in reci-

procal space, for a non-absorbing spherical crystal the FWHM
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Figure 6
The arrangement of the triple-crystal system used at beamline D3 at the
synchrotron-radiation source at HASYLAB.
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consists of four terms, i.e. �!�FWHM, the broadening caused by

the divergence, �!��
FWHM, the broadening caused by the

wavelength spread, �!r=�
FWHM, the broadening caused by the

crystallite size and �!�FWHM, the broadening caused by the

mosaicity of the crystal:

�!geom
FWHM � ��!�FWHM ��!��

FWHM ��!r=�
FWHM ��!�FWHM

� ����� ��� tan �=tan �M ��!r=�
FWHM � �mosaic

FWHM;

�23�

where �� is the form factor belonging to the distribution P��S
p�,

and � and �M are the Bragg angles of the sample and the

monochromator, respectively. The plus signs in (23) corre-

spond to the antiparallel (IIIa), the minus sign to the parallel

sample position (IIIb) in Fig. 6. [It should be remembered that

in the parallel arrangement expression (23) is valid only for

sample re¯ections whose reciprocal-lattice vectors are equal

to or greater than the lattice vector corresponding to the

monochromator re¯ections, see Fig. 2(b) in Ro-93b and

corresponding text.]

In the case of a perfect crystal, the mosaic spread �mosaic
FWHM is

zero. The dashed-dotted red pro®les in Fig. 7(b), which

therefore correspond to Lorentzian distributions having the

FWHMs calculated according to

�!L
FWHM � �L�!L

integral

� �L����1� tan �=tan �M� � 2=�3r���=sin 2���; �24�
coincide with the black full lines, indicating that, in the case

when both distributions, Ikin
sphere and P, are Lorentzian,

expression (24) is an excellent approximation for the FWHMs

of the two pro®les obtained with (19).

In the case Ikin
sphere and P are both Gaussian distributions (Fig.

7a), an excellent agreement between the black pro®les and the

dashed-dotted red Gaussian distributions are obtained with

�!G
FWHM � �G�!G

integral

� �Gf����1� tan �=tan �M��2 � �2=�3r���=sin 2���2g1=2:

�25�
The blue dashed pro®le in Fig. 7(a), corresponding to a

Gaussian distribution with

�!G
FWHM � f���G�2 � ���G�tan �=tan �M��2

� �2=�3r���=sin 2���G�2g1=2;

however, differs appreciably from the black lines, indicating

that it is essential to add the terms �!�FWHM � ���� and

�!��
FWHM linearly.

4. Dynamical diffraction by a double-monochromator
system at a synchrotron-radiation source

The results of x3 are based on the assumption that the reci-

procal-lattice point corresponding to a 'very thick' mono-

chromator crystal can be represented by a dimensionless

mathematical point. It is obvious from x2.2, however, that,

according to the kinematical extinction theory, even for large

spherical crystals bathed in the incident beam, signi®cant

intensity of the re¯ected beam is observed in the � range of

about ÿ2=�<�< 2=�. The same effect can be expected for a

crystal of any shape, even for a plane parallel plate whose

lateral extension is larger than the cross section of the incident

beam, i.e. for the monochromator crystals. Consequently, the

relation between the divergence and the wavelength will be

more complicated than that given by expressions (16) and

(17).

4.1. Dynamical diffraction profile for a thick plane parallel
plate (symmetrical Bragg case). Monochromatic parallel
incident beam

In this section, the discussion is restricted to centrosym-

metric absorbing crystals with unlimited lateral extension, to

situations where the Bragg planes are parallel to the crystal

surface and the incident plane wave is polarized with its

electric vector perpendicular to the re¯ection plane. For the

symmetrical Bragg case, the monochromatic re¯ectivity Rplate

for a thick plane parallel plate can be approximated by

Figure 7
Discussion of the pro®le (19), calculated for the 111 re¯ection of Si, � =
1.5418 AÊ , radius of the sample, r = 100 mm, � � 0:00195�. The intensities
of all pro®les are divided by their respective maximum values. Black lines:
pro®le (19), obtained with P��S

p�, de®ned by the pro®le (21), and f
replaced by the pro®le (7). Red dashed pro®les: pro®les with the FWHM,
expression (22). Red chain-dotted pro®les: pro®les with the FWHM,
expression (24) and (25), respectively. Blue dashed pro®le in (a): the
Gaussian distribution with �!G

FWHM � f���G�2 � ���G�tan �= tan �M��2�
�2=�3r���= sin 2���G�2g1=2. (a) Ikin

sphere�!; �S
p� and P��S

p� replaced by Gaus-
sians. (b) Ikin

sphere�!; �S
p� and P��S

p� replaced by Lorentzians.



[Zachariasen, 1945, expressions (3.116), (3.139), (3.179),

(3.181), (3.189); Hirsch & Ramachandran, 1950, expressions

(16), (19)]

Rplate � Lÿ �L2 ÿ 1�1=2 �26�
L � fy2 � g2 � j��y2 ÿ g2 ÿ 1� k2�2
� 4�gyÿ k�2�1=2jg=�1� k2�

y � ÿF 00=jF 0hj ÿ ���

g � ÿF 000 jF 0hj
k � F 00h=F 0h

�! � !ÿ � � ÿ��=sin 2�

In (26), Fh � F 0h � iF 00h is the complex structure factor of index

h and � is the kinematical Bragg angle. In Fig. 8, the pro®les of

the fundamental Si 220 re¯ection (� = 1.542 AÊ , red pro®le)

and its next harmonics (440, �=2, blue pro®le; 660, �=3, green

pro®le) are presented versus !ÿ �. The anomalous-dispersion

corrections for the atomic form factor, f 0 and f 00 of Si (Table 1)

were evaluated with the program ABSORB by Brennan &

Cowan (1992). Fig. 8 is equivalent to Fig. 3.2 presented in

Coppens (1992).

The Darwin width, given by Coppens (1992), expression

(C-3.2),

�!D � �2=���1=����= sin 2�� � ��D��= sin 2��; �27�

is equivalent to the angular range of total re¯ection of the

single-crystal diffraction pro®le calculated for zero absorption

[g = k = f 00 = 0; chain-dotted black pro®le in Fig. 8; according to

(26), for ÿ1 < y < 1, ��D � 2=���� is obtained]. Since the

area under the re¯ection curve of the pro®le (26) as well as its

maximum depend on absorption, the same is true for the

integral width as well as for the FWHM. On the other hand, in

the case of zero absorption it is obvious from Fig. 8 that the

FWHM is nearly equivalent to the Darwin width. Using

expression (26), it can easily be shown by means of Mathe-

matica (Wolfram, 1999) that for zero absorption

�!f 00�0
integral � 4

3�!
D � ��f 00�0

integral�=sin 2�

�!f 00�0
FWHM � �3� 21=2=2��!D � ��f 00�0

FWHM�=sin 2�:
�28�

It is interesting to compare these results for

��f 00�0
integral � 0:85=� and ��f 00�0

FWHM � 0:67=� with the widths

(11) and (12) obtained for a spherical crystal with a large r=�
ratio.
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Figure 8
The pro®les Rplate. Red pro®le: the fundamental Si 220 re¯ection
calculated for � = 1.542 AÊ . Chain-dotted black pro®le: the fundamental Si
220 re¯ection calculated for � = 1.542 AÊ and zero absorption (g = k = f 0 0 =
0). Upper x axis: y scale. Middle x axis: �! � �!ÿ �� scale [�]. Lowest x
axis: � scale [AÊ ÿ1]. Blue pro®le: Si 440 re¯ection calculated for �=2. Green
pro®le: Si 660 re¯ection calculated for �=3.

Table 1
Real and imaginary parts of the structure factors of the Si 000 and Si 220 structure factors.

Extinction lengths and widths correspond to Figs. 8 and 10. See x4 for de®nitions.

� (AÊ ) f 0 f 0 0 hkl F 0 F 0 0 � (mm) �!D, �!centre (0 0) ��D, ��centre � 106 (AÊ )

1.5418 0.2547 0.3308 000 114.03 2.65 3.2 4.26 ÿ73
220 ÿ69.17 ÿ2.57 5.3 5.17 88

0.7709 0.0951 0.0841 000 112.75 0.67 6.5 1.05 ÿ 9
440 43.34 0.59 17.0 0.81 7

0.5139 0.0445 0.0363 000 112.35 0.29 9.8 0.47 ÿ3
660 ÿ23.59 ÿ0.22 46.9 0.20 1

Figure 9
Dynamical diffraction in reciprocal space.
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Caused by the ®rst term of the variable y, in the Bragg case

the value of the scan angle, !centre, corresponding to the centre

of the diffraction pattern, y = 0,

�!centre � !centre ÿ � � �1=���0���=sin 2�; �29�

is always greater than the Bragg angle. The corresponding

�centre � ÿ1=���0� is negative, i.e. at the centre of the intensity

pro®le the reciprocal-lattice point lies inside the Ewald sphere.

4.2. Wavelength range of the beam reflected by a thick plane
parallel plate (symmetrical Bragg case). Parallel incident
beam

The wavelength range of the beam re¯ected by the ®rst

monochromator crystal can easily be deduced from Fig. 9. The

horizontal re¯ecting planes are parallel to the surface of the

thick plane-parallel crystal plate with unlimited lateral

extension. The reciprocal-lattice vector h, which is normal to

the re¯ecting planes, connects the zero point of the reciprocal

lattice O with the reciprocal-lattice point H. The vectors MiO

represent wave vectors corresponding to a ray with a parti-

cular angle of incidence, !M � �M � �M
p . Each of the rays

incident on the ®rst monochromator crystal comprises the

whole range of wavelengths of the continuous spectrum of

the synchrotron-radiation beam. The Ewald spheres corre-

sponding to the particular wavelengths �i � 1=MiO are

represented by the arcs. !M � �M � �M
p , the angle of incidence,

is identical for the different wave vectors MiO. According to

(26), the diffracted intensity will depend on the particular

wavelength �i and the corresponding �i. Considering the

triangles OMiH (MiH � 1=�i � �i, MiO � 1=�i, OH � jhj),

the relation �i � 2�jhj sin!M � �i�=�jhj2 ÿ �2
i � can easily be

obtained. The wavelength range �� � �2 ÿ �1 corresponding

to the range of total re¯ection, ÿ1 < y < 1,

��D � 4d2
M=���h� � ���!D=tan �M�; �30�

is obtained, bearing in mind that �2
i � jhj2 and inserting for

�1 � ÿ1=���h� ÿ 1=���0� and �2 � �1=���h� ÿ 1=���0�.
This result is identical with Coppens's (1992) expression (3.4).

The centre of the wavelength range, �centre
�M

p
, corresponding to

y = 0, is displaced from the wavelength, ��M
p

, de®ned in (16) by

��centre � �centre
�M

p
ÿ ��M

p
� ÿ2d2

M=���0�: �31�

In Fig. 10, a surface plot of the re¯ectivity, Rplate��M
p ; ��, for

ÿ0:002 � �M
p � 0:002� and 1:5414 � � � 1:5420 AÊ is shown

for the Si �220 re¯ection. The corresponding values for ��D

Figure 10
The surface plot of the re¯ectivity, Rplate��M

p ; ��, calculated for the Si 220
re¯ection by means of Mathematica. x axis: 1:5414 � � � 1:5420 AÊ ; y axis:
ÿ0:002 � �M

p � 0:002�; z axis: Rplate��M
p ; ��.

Figure 11
The wavelength distribution of the doubly diffracted ray. Full line:
P��M

p ; �� de®ned in equation (32). Dashed lines: the re¯ectivities for
single diffraction, Rplate��M

p ; ��, for Si 220. (a) Zero offset. (b) c2±c1 =
0.001�. (c) c2±c1 = 0.002�.



and ��centre are given in Table 1. It is obvious from the ®gure

that for each particular angle �M
p the wavelength ��M

p
de®ned

by (16) is now replaced by a wavelength distribution

Rplate��M
p ; ��. The centre of the corresponding pro®le, �centre

�M
p

, is

displaced from ��M
p

by the constant term (31). The width of the

wavelength range (30), on the other hand, is constant for all

�M
p .

Considering the diffraction by the second monochromator

crystal, it is essential to know the exact direction of the rays

diffracted by the ®rst monochromator. The direction of these

rays can be deduced from Fig. 9. According to the dynamical

theory (Section 28c in von Laue, 1960), the tangential

components OPi of the external (vacuum) and internal

(crystal) wave vectors must be equal, i.e. for a particular index

i, the points O, H and Qi are lying on a common normal to the

crystal surface. The points Qi are therefore determined by this

normal and the radius of the corresponding Ewald sphere,

1=�i. In the symmetrical Bragg case, therefore, the angles at O

and Qi in the triangle OMiQi are equal, i.e. for a particular

divergence �M
p , for all wavelengths composing this ray, the

angle of re¯ection is equal to the angle of incidence,

!M � �M � �M
p . As a consequence, as long as the second

monochromator is exactly parallel to the ®rst one, all

rays re¯ected by the ®rst monochromator crystal will

meet the diffraction condition of the second mono-

chromator. The wavelength distribution of the doubly

diffracted ray (full line in Fig. 11a) is determined by

the product of the re¯ectivities for single diffraction

(dashed lines in Fig. 11). It is obvious from the ®gure

that the FWHM of the full line in Fig. 11(a) is about

the same as that of the chain dotted line. The two

pro®les, however, differ appreciably in shape and in

their integral widths.

To avoid higher-order contamination of the mono-

chromated beam, a small offset from parallelism can

be used to take advantage of the different wavelength

ranges, ��D, and the different displacements, ��centre,

of the higher-order re¯ections. The effect on the

fundamental Si 220 re¯ection is shown in Figs. 11(b)

and 11(c). The full line represents the wavelength

distribution of the doubly re¯ected beam

P��M
p ; �� � Rplate��M1

p � c1; ��Rplate��M2
p � c2; �� �32�

for offsets c2ÿc1 = 0.001� and c2ÿc1 = 0.002�,
respectively. It should be noted that the wavelength

corresponding to the maximum of the pro®le is shifted

to larger values. It is clear from the ®gure that the

shape as well as the width of the wavelength pro®le

strongly depend on the ®ne tuning of the parallel

orientation of the second monochromator crystal.

5. Intensity profile of a perfect spherical crystal
at a synchrotron-radiation source. Comparison
with experimental profiles

Taking into account the results of the dynamical

theory, after triple diffraction by two monochromator

crystals and a spherical sample, the `exact' total

intensity obtained for a particular diffractometer

angle, !, with a divergent synchrotron-radiation beam

has to be evaluated by

I�!� � I0q
R

Rext
sphere�!; �S

p�P��S
p�P��M

p ; �� d� d�S
p; �33�

where Rext
sphere�!; �S

p� and P��M
p ; �� are de®ned by

expressions (9) and (32). It should be noted that,

®rstly, the three pro®les involved in (33) are different

in shape and, secondly, they are neither Gaussian nor

Lorentzian. Furthermore, as discussed in x3, the
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Figure 12
15 observed and theoretical intensity distributions. Red crosses: measured with
synchrotron radiation at � = 1.5418 AÊ . Black pro®les: estimated according to
expression (33) for the perfect spherical Si sample with radius r = 84 mm with zero
offset. The Bragg re¯ections are marked by the indices hkl and the experimental
position IIIa or IIIb de®ned in Fig. 6. Last diagram: the 15 experimental (red full
circles) and theoretical (black circles) FWHMs [�] versus the Bragg angle [�].
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probability distribution P��S
p� for the particular rays of the

beam involved in the triple diffraction process is not known at

all.

On the other hand, if all constituents were Lorentzian in

shape, the FWHM of the pro®le obtained with (33) could be

expressed as

�!L
FWHM � �L����1� tan �=tan �M� � ���D=�� tan �

��!r=�
integral� �34�

and if all distribution functions involved in (33) were Gaussian

in shape, the FWHM of the Bragg re¯ection pro®le, �!G
FWHM,

is given by

Figure 13
FWHMs [�] of a perfect spherical Si crystal with radius of 84 mm versus the Bragg angle [�] for six different wavelengths. Black full circles: experimental
FWHMs. Red crosses: FWHMs corresponding to the `Lorentzian' expression (34). Blue crosses: FWHMs corresponding to the `Gaussian' expression
(35). (a) Dynamical term neglected, i.e. ���D=�� tan � � 0. (b) Dynamical term taken into account, i.e. ���D=�� tan � 6� 0.



�!G
FWHM � �Gf����1� tan �=tan �M��2 � ����D=�� tan ��2

� ��!r=�
integral�2g1=2: �35�

In the following, the theoretical FWHMs will be compared

with FWHMs of experimental pro®les of an etched perfect

spherical Si crystal with a radius of 84 mm. The measurements

at six different wavelengths in the Bragg angle range � < 70�

were performed at beamline D3 at HASYLAB, DESY2 under

the same conditions and in the same manner as described in

Rossmanith et al. (1993). The 145 observed pro®les are given

as red crosses in Fig. 12 (14 pro®les at � = 1.5418 AÊ ), only part

of which is published here.3 A ®rst analysis of the data, based

on the method introduced in Ro-93a and Ro-93b, i.e. based on

(23), was performed by Schmidt (1995). In the present paper,

the experimental FWHMs, given as black full circles in Fig. 13

and as red full circles in the corresponding diagrams of Fig. 12

and the deposit material, were re-determined ®tting to the

experimental data split-pseudo-Voigt distributions, de®ned by

(47) and shown in Fig. 14(b). It was found that the observed

X-ray synchrotron pro®les can be well approximated by the

symmetrical pseudo-Voigt (Fig. 14a) distribution, although

(33) is not the convolution of Gaussian and Lorentzian func-

tions. Consequently, an analysis of the Gaussian and Lorent-

zian components of the related Voigt functions (see Appendix

A), which is very similar in shape to the pseudo-Voigt distri-

bution, is senseless and will not be considered in the present

paper. Attention will be restricted to the `exact' expression

(33).

However, as a ®rst step it will be assumed that all distri-

bution functions involved in (33) are either Lorentian or

Gaussian in shape, i.e. in Fig. 13(b) (lower six diagrams), the

experimental widths are compared with the FWHMs corre-

sponding to (34) and (35), given as red and blue crosses,

respectively. In Fig. 13(a) (upper six diagrams), according to

the kinematical theory presented in x3, the dynamical term,

���D=�� tan �, is neglected. The only parameter that is

unknown in the expressions for the pro®le width is the integral

width corresponding to the divergence of the incident beam, �.
This parameter was estimated for each wavelength, ®tting the

theoretical FWHMs to the experimental ones. The corre-

sponding values for the FWHM, �FWHM
exp , obtained in this way,

are given in Table 2. It is interesting to note that the purely

kinematical approach results in very similar parameters �FWHM
exp

for the Lorentzian and Gaussian distribution functions,

whereas the Gaussian FWHMs are appreciably larger in the

case corresponding to Fig. 13(b). Furthermore, it is clearly

visible that �FWHM
exp varies with the wavelength. The physical

signi®cance of the different results obtained for �FWHM
exp can be

seen from Fig. 15. The black rectangle, having the width �
de®ned in (20), represents the rectangular normalized distri-

bution P��S
p� of the beam divergence introduced in x3. The

blue (red) pro®les in the Fig. 15(c) show the normalized

Gaussian and Lorentzian distribution functions de®ned in

(21), whereas the normalized Gaussian (blue) and Lorentzian

(red) distribution functions given in Figs. 15(a) and 15(b) show

the P��S
p� de®ned by widths given in Table 2, corresponding to

Figs. 13(a) and 13(b), respectively. It is obvious from Figs.

15(a) and 15(b) that the maxima of the normalized Gaussians

and Lorentzians are no longer equal to the height of the

rectangle. Whereas the reduction of the number of photons in

the maxima can readily be explained, for example, by wave-

length-dependent air scattering of the photons of the incident

beam, it is dif®cult to ®nd physically sound reasons for the

enhancement of the photons in the forward direction in the

case of some of the Gaussians. However, although equations

(34) and (35) are valid only in the case the experimental Bragg

intensity pro®les as well as the pro®les involved in expression

(33) are all Gaussian or all Lorentzian in shape, fairly good

agreement between the experimental and theoretical FWHMs
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2 The measurement was performed in 1994. The author is indepted to K.
Eichhorn, G. Kumpat, R. Kurtz and G. Ulrich for valuable support during the
measurement.
3 The rest of Fig. 12 has been deposited (19 pro®les at � = 1.3 AÊ ; 29 pro®les at
� = 1.0 AÊ ; 19 pro®les at � = 0.7106 AÊ ; 23 pro®les at � = 0.5607 AÊ ; 41 pro®les at
� = 0.3 AÊ ) and is available from the IUCr electronic archives (Reference:
MM0026). Services for accessing these data are described at the back of the
journal.

Figure 14
(a) The pseudo-Voigt function calculated for the mixing parameters � =
0.0 (blue, purely Gaussian), 0.1, 0.2, . . . , 0.9, 1.0 (red, purely Lorentzian),
x scale in FWHM units. (b) The normalized split-pseudo-Voigt function
PV

split
N calculated for �xFWHM�x<0� � 0:5 and �xFWHM�x>0� � 1, and mixing

parameters, �x<0 � 0:4 and �x>0 � 0:8, x scale in �xFWHM�x<0� units.
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is obtained for both distributions, with and without taking into

account the dynamical term ���D=�� tan �. It can therefore be

concluded that the four expressions can be used for the

evaluation of approximate FWHMs with comparable success.

In the second step of the present investigation, in Fig. 12

and in the deposit material, the observed pro®les (red crosses)

are compared with the pro®les (black lines) obtained with

expression (33). In each diagram, the Bragg re¯ection is

marked by the indices hkl and the experimental position, IIIa

or IIIb de®ned in Fig. 6. The step widths of the experimental

scans, �!step, given in Table 3, can also be deduced from the

!-scan width (limits of the x axis given in each diagram) and

the number of steps. The last diagrams in Fig. 12 and in the

deposit material show the FWHMs versus the Bragg angle for

the particular wavelength. The theoretical (black) pro®les in

each diagram were calculated for the perfect spherical Si

sample with radius r = 84 mm and the Si 111 double mono-

chromator system, i.e. Rext
sphere�!; �S

p� is de®ned by (9) and

P��M
p ; �� was estimated according to (32) for the parallel

arrangement with zero offset, with F 0 and F 00 given in Table 3.

P��S
p�, the only unknown distribution function in (33), was

®tted to the experimental data, i.e. for each particular wave-

length one distinct pseudo-Voigt distribution, de®ned by the

FWHM and the mixing parameter � given in Table 3, was used

for the calculation of the theoretical pro®les (33). It is obvious

from Fig. 12 and the deposited material that, apart from small

Bragg angles, the theoretical distributions obtained with this

method are good estimates for the observed Bragg intensity

re¯ections. In Fig. 15(d), the various pseudo-Voigt estimates

obtained for P��S
p� for the different wavelengths are compared

with the rectangular distribution P��S
p� discussed in x3. It

should be noticed that the mixing parameter � is small for

the smallest wavelength (see Table 3), i.e. the corresponding

distribution P��S
p� obtained by the ®tting process is nearly

Gaussian. For � = 1.5418 AÊ , on the other hand, the pseudo-

Voigt distribution is nearly Lorentzian. It is obvious from Fig.

15 that for all three models, the Gaussian and Lorentian as

well as the `exact' model, the integral widths of the distribu-

tions P��S
p�, obtained by the ®tting process, differ from that

de®ned by (20), being larger in most cases, all having,

however, the same order of magnitude.

For small Bragg angles, the experimental pro®le shapes and

widths differ appreciably from those obtained with the `exact'

expression (33). Especially for the 111 re¯ection, measured in

the position IIIb, for all wavelengths the observed distribution

functions are more Lorentzian in shape and have larger

FWHMs than the calculated ones. (For � = 0.3 AÊ , the width of

the re¯ection is smaller than the step width of the measure-

ment, the pro®le was not observable, see Fig. 12 deposit

material.) For the 111 re¯ection, the Bragg angle of the

monochromator crystals is equal to that of the sample.

Consequently, for the position IIIb, the ®rst terms in (34) and

(35) are zero. The theoretical pro®le is determined by the

distribution functions Rext
sphere�!; �S

p� and P��M
p ; �� only, i.e. it

depends on the offset from parallelism of the two mono-

chromator crystals. The pro®les presented in Fig. 12 were

calculated for zero offset, whereas the experiment was

performed with a small but unknown offset angle (the inten-

sity incident on the sample was reduced to about 1
2). However,

comparison of �1�1�1 pro®les calculated for position IIIb for

different offset angles (Fig. 16: red crosses: measured with

synchrotron radiation at � = 1.5418 AÊ ; black pro®le: c2ÿc1 =

Table 2
�FWHM

exp corresponding to Figs. 13, 15(a) and 15(b).

L: all distributions involved in equation (33) are Lorentzian in shape; G: all
distributions involved in equation (33) are Gaussian in shape.

�FWHM
exp (�) � 104

���D=�� tan � � 0
Fig. 13(a)

���D=�� tan � 6� 0
Fig. 13(b)

� (AÊ ) L G L G

0.3 18.5 18.3 15.9 17.8
0.5607 17.8 17.8 13.7 16.9
0.7106 17.8 17.8 12.7 16.0
1.0 21.0 20.7 13.4 17.8
1.3 28.0 28.2 19.7 26.3
1.5418 27.1 27.2 15.9 22.5

Figure 15
The probability distribution P��S

p�. In all diagrams, the black rectangular
normalized distribution corresponds to the pro®le discussed in x3, i.e. the
width � = 0.00195� of the rectangle is de®ned by expression (20). (a) and
(b) Red (blue) pro®le: normalized Lorentzian (Gaussian) distributions
corresponding to Figs. 13(a) and 13(b), respectively, with �FWHM

exp given for
the various wavelengths in Table 2. (c) Red (blue) pro®le: normalized
Lorentzian (Gaussian) de®ned in equation (21). (d) Normalized pseudo-
Voigt distribution functions corresponding to Fig. 12 and deposit
material, with �FWHM

exp and � given for the various wavelengths in Table 3.



0.0, equal with the corresponding pro®le in Fig. 12; green

pro®le: c2ÿc1 = 0.001�; blue pro®le: c2ÿc1 = 0.002�) shows

that the calculated intensity distribution ± the shape as well as

the width ± is only marginally modi®ed by the offset of 0.001�.
Even in the case of the large offset angle, however, which

would drastically reduce the intensity incident on the sample

(see Fig. 11c), the theoretical pro®le does not ®t the observed

data, indicating that there is obviously an additional broad-

ening effect which was neglected [�n = 0 in expressions (18)

and (19)] or not considered (absorption, TDS etc.) during the

derivation of (33). Broadening of the pro®les can additionally

be expected in the case of imperfections in the mono-

chromator and/or sample crystals, which would modify the

distributions P��M
p ; �� and Rext

sphere�!; �S
p�. Last but not least, the

kinematical approximations (8) and (9) for the pro®le shape of

the intensity distribution Rext
sphere�!; �S

p� may also be capable of

improvement.

6. Conclusions

Expressions for the theoretical pro®les observed in the `real

experiment' were derived, considering the diffraction by the

double monochromator system in the framework of the

dynamical theory and the diffraction by the spherical perfect

crystal sample in the framework of the kinematical extinction

theory. It was shown that satisfactory agreement between

theoretical and observed pro®le shapes can be obtained for

re¯ections with intermediate and large Bragg angles, i.e. for

intensity pro®les whose width is dominated by the two

wavelength-spread-dependent terms, ����=�� tan � and

���D=�� tan �. An exact evaluation of the pro®les, however, is

not possible, because at least the probability distribution,

P��S
p�, of the divergent rays of the incident beam involved in

the triple-crystal diffraction is not known. It turned out that

distinct pseudo-Voigt distributions with wavelength-depen-

dent FWHMs and mixing parameters were necessary to ®t the

experimental pro®les. The pro®les, P��S
p�, obtained with this

®tting procedure are similar to those obtained in the two cases,

when all the pro®les involved in the diffraction process were

either Lorentzian or Gaussian in shape. In addition, the

agreement between the FWHMs of the `exact' theoretical

intensity pro®les (33) and the experimental widths is

comparable to that obtained with the approximations (34) and

(35), replacing all pro®les involved in the diffraction process

by either Gaussians or Lorentzians, having the same area and

the same integral width as the component distributions.

APPENDIX A
The Voigt and pseudo-Voigt functions

The following symbols will be used in the Appendix:

�xi
integral integral width of the distribution i

�xi
FWHM FWHM of the distribution i

�i � �xi
FWHM=�xi

integral form factor of the distribution i.

The convolution of two distribution functions f and g is

de®ned by

h�x� � R�1
ÿ1

f �x0�g�xÿ x0� dx0: �36�

(a) If f and g are both normalized Gaussian distributions GN

de®ned by

GN � �1=�xG
integral�G �37�

with

G � exp�ÿ��x=�xG
integral�2�

then h is also Gaussian with an integral width given by

(Langford, 1978)
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Table 3
The real and imaginary parts of the Si 000 and Si 111 structure factors, �FWHM

exp , and the mixing parameter � of the pseudo-Voigt distribution, P��S
p�, and the

experimental step width, �!step, corresponding to Fig. 12 and the deposit material.

Beamline D3 at HASYLAB/DESY, Si 111 double monochromator: a = 5.43 AÊ .

� (AÊ ) F 00 F 000 F 0111 F 00111 �FWHM
exp (�) � 104 � �!step (�) � 104

0.3 112.069 0.092 ÿ58.094 ÿ0.064 18.5 0.12 10
0.5607 112.418 0.349 ÿ58.337 ÿ0.244 17.2 0.26 10
0.7106 112.655 0.570 ÿ58.503 ÿ0.398 17.2 0.43 10±20
1.0 113.140 1.136 ÿ58.842 ÿ0.794 19.1 0.47 10±20
1.3 113.647 1.903 ÿ59.196 ÿ1.330 25.5 0.65 10±20±30
1.5418 114.030 2.646 ÿ59.464 ÿ1.850 24.2 0.78 10±20

Figure 16
Observed and theoretical intensity distributions of the �1�1�1 re¯ection,
position IIIb. Red crosses: measured with synchrotron radiation at � =
1.5418 AÊ . Black (green, blue) pro®le: calculated according to expression
(33) for the perfect spherical Si sample with radius r = 84 mm with zero
offset (0.001�, 0.002� offset angle).
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�xh
integral � ���x

f
integral�2 � ��x

g
integral�2�1=2: �38�

The form factor of a Gaussian distribution results in

�G � 2�ln 2=��1=2 � 0:93943: �39�
(b) If f and g are both normalized Lorentzian distributions LN

de®ned by

LN � �1=�xL
integral�L �40�

with

L � �1� ��x=�xL
integral�2�ÿ1;

then h is also Lorentzian with an integral width given by

�xh
integral � �x

f
integral ��x

g
integral: �41�

The form factor of a Lorentzian distribution results in

�L � 2=� � 0:63662: �42�
(c) If f is Lorentzian and g is Gaussian then h is a Voigt

distribution V with an integral width given by

�xV
integral � �x

g
integral exp�ÿ�1=����x

f
integral=�x

g
integral�2�

� 1ÿ erf
1

�1=2

�x
f
integral

�x
g
integral

 !" #ÿ1

: �43�

The Voigt function is very similar in shape to the normalized

pseudo-Voigt function, PVN, de®ned by (Parrish, 1992,

expression 2.3.3.15)

PVN � �1ÿ ��GN � �LN � ��1ÿ ���GG� ��LL�=�xFWHM;

�44�
where � is the mixing parameter giving the proportion of

the Lorentzian contribution, 0 � � � 1 and �xPV
FWHM �

�xG
FWHM � �xL

FWHM � �xFWHM. It can easily be shown that

�PV � �1ÿ ���G � ��L: �45�
Therefore it follows that

�xV
integral � �xPV

integral � �xPV
FWHM=�PV; �46�

i.e. re®ned � and �xFWHM of a ®tted experimental pro®le can

be related by a polynomial expansion (Hastings et al., 1984) to

the widths of the Lorentzian and Gaussian components of

the Voigt function. The pseudo-Voigt function, shown for

different � in Fig. 14(a), is therefore frequently used to ®t

synchrotron-radiation pro®les. Peak asymmetry can be incor-

porated by a normalized split-pseudo-Voigt function PV
split
N

(Fig. 14b) consisting of two halves, PVN;x<0 and PVN;x>0, with

different widths, �xFWHM�x<0� and �xFWHM�x>0�, and mixing

parameters, �x<0 and �x>0, for the left and right side, respec-

tively, but with a common maximum value PV
split
N �x � 0�:

PV
split
N �x< 0� � f2PVN;x>0�x � 0�=�PVN;x<0�x � 0�

� PVN;x>0�x � 0��gPVN;x<0 �47�
PV

split
N �x> 0� � f2PVN;x<0�x � 0�=�PVN;x<0�x � 0�

� PVN;x>0�x � 0��gPVN;x>0

PV
split
N �x � 0� � 2PVN;x>0�x � 0�PVN;x<0�x � 0�=�PVN;x<0�x � 0�

� PVN;x>0�x � 0��:
The FWHM and the integral width are obviously given by

�xsÿPV
FWHM � ��xFWHM�x<0� ��xFWHM�x<0��=2

�xsÿPV
integral � 1=PV

split
N �x � 0�: �48�
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