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1. Introduction

In Ro-02' the dynamical, kinematical and extinction-
corrected intensity profiles of perfect crystals were considered.
In the present paper, the modification of these profiles due to
the experimental conditions of a measurement with synchro-
tron radiation will be analysed, directing attention on the
width and shape of the intensity distributions of a perfect
spherical crystal. In §2, expressions for the shapes, the integral
width and the full width at half-maximum (FWHM) of the
kinematical (§2.1) and extinction-corrected profiles (§2.2) are
given. The modification of the profile shape caused by the
characteristics of the synchrotron radiation at the beamline
D3 at HASYLAB, DESY, considering the monochromator
system in the framework of the kinematical theory, is
discussed in §3. In §4, the corresponding results derived in the
framework of the dynamical theory are presented. In §5, the
theoretical intensity profiles are compared with profiles of a
spherical perfect Si sample, measured with synchrotron
radiation at six different wavelengths.

2. Intensity distribution functions for a perfect
spherical crystal. Monochromatic parallel incident
beam

2.1. The kinematical profile

Using the abbreviation 1/A = ryA|F|K/V,, where A is the
extinction length, r, is the classical electron radius, A is the
wavelength of the radiation used for diffraction, F is the
structure factor, V. is the volume of the unit cell, K is the
polarization coefficient equal to 1 and |cos 26| for the parallel
and the perpendicular component of the X-ray electric field,

respectively, and 0 is the Bragg angle, the intensity Ié‘;‘k‘me for a

1 Some of the expressions and figures discussed in this paper were derived or
presented in previous papers of the author (Rossmanith, 1993a,b, 2000a,b,
2002). These expressions and figures will be referenced in the following by the
abbreviation Ro-xxy-(z), where xx represents the two last digits of the year of

integral width as well as the full width at half-maximum are presented and
discussed. The theoretical results are compared with observations.

particular w step of a perfect spherical crystal with radius r can
be expressed as [Ro-02-(19)]

Lghere = (Io@)Righere = (10@)3 (r/ ADf (), (M

where I, is the incident intensity, ¢ = 27°7 is the cross section
of the sphere and Rls(;i;];ere is the kinematical reflectivity. The
normalized intensity distribution function f({) can be

approximated by

f(é‘) = (Aé‘integral)_1 [1 + 8(7.”{)2 - COS(47TF§)
— darrg sin(4mre)]/[32(r)*, )

where
A;integral = 2/(3]’) (3)

is the integral width of the profiles (1) and (2). Expressing the
distance of the particular reciprocal-lattice point from the
Ewald sphere in the direction of the reflected beam, ¢, in terms
of the rotation angle w [see Ro-00a-(12)]

w) = (1/2% 4 |h)* = 2|h| sinw/A)V? — 1)1, 4)

we obtain the w-scan profile. In (4), |A| is the length of the
reciprocal-lattice vector h corresponding to the reciprocal-
lattice point H. For intermediate Bragg angles, the integral
width of the kinematical intensity profile, Aw, can be
approximated by [Ro-00a-(16)]

Aa)integral = Aé‘integral)“/ sin260 = 2)\./(3}’ sin 29)1 (5)

integral»

whereas the corresponding FWHM, Awpywy, calculated by
means of Mathematica (Wolfram, 1999), is given by

Awpyiy = 0.553331/(r sin 26). (6)

In Fig. 1, the normalized profile (2), represented as a function
of w (in degrees) for A = 0.51 A, r = 1pm and 6 = 5°, is
compared with the Gaussian, I, as well as the Lorentzian
distribution, I;, having the same area (=1) and the same
integral width, Aw, , = 0.0112°:

integral

]G(w) = eXp{_n[g(w)/Agintegral]z}/Awimegral

publication, y stands for a, b, ¢ etc. if more than one paper in the respective (7)
year is refgrencefi and z represents the number of the expression or figure IL(a)) =1/{1+ [ng‘(a))/Aé‘imegral]z}/Aa)imegml,

under consideration.
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It is obvious from the figure that neither the Gaussian nor the
Lorentzian distribution is an adequate approximation for the
kinematical intensity profile. Furthermore, the form factor
B = Awpwim/ AWipegral = 0.83 of the kinematical intensity
profile differs significantly from the form factors of the
Gaussian, B, =2 0.94, as well as the Lorentzian distribution,
B, = 0.64 [see expressions (39) and (42) in Appendix A].

2.2. Extinction-corrected profiles

Extinction-corrected intensity profiles, /3., derived in the
framework of the kinematical theory for spherical crystals are
given by Becker & Coppens (1974), here referred to as B&C
[see also Ro-02-(18)]. Unfortunately, a closed form of the
reflectivity RO, = Iohere/(Ipq) could be given by B&C only

for 260 = 0° (B&C.31) and 26 = 180° (B&C.32):

RSXI

sphere

(20 = 180°) = 1 — 4/(3R{j 1
X BRihere/2)'}
Rere(20 = 0°) = 5 = 1/(BRhere ) + exp(—3REhce)/ GRihere)

+ exp(_SRls(;‘;iere)/(SRl(gkllere) . (8)

— [In(1 4+ 3RY0 /2)]

sphere

It will therefore be assumed in the following that for inter-
mediate values of 26 the profile can be calculated in a very first
approximation according to

S[)J(}llere(e) = {ng}tlere(zg = OO)}(90 - 9)/90

+ (Rephere(26 = 180°)}0/90. ©)

2.2.1. Intensity profiles obtained with the ’pull-down
procedure’. The extinction-corrected profiles (8) are
presented in Fig. 8 of Ro-02 for various 4r/3A =1,/ A ratios.
The profiles are obtained by pulling down the ‘reciprocal-
lattice sphere’ in the direction of the diffracted beam from
outside to inside the Ewald sphere, i.e. the intensity is calcu-
lated as a function of ¢. It is obvious from this figure that for
small 7,/ A ratios the two profiles are very similar and differ

Figure 1

Black profile: the normalized intensity distribution function, equation (2),
represented as a function of w. A = 0.51 Ar=1 pum and 6 = 5°. Blue
dashed (red chain-dotted) profile: the Gaussian distribution, I,
(Lorentzian distribution, ;) having the same area (= 1) and the same
integral width as the black profile.

only marginally in their maximum values. With increasing
t./A ratio, the two profiles differ more and more. The
maximum value of the reflectivity for back reflection (26 =
180°) approaches the value 1, whereas for the forward
reflection (20 = 0°) the value 1/2 is obtained.

In Fig. 2(a), the black full lines show the integral widths
versus the radius r of the sample, calculated according to

Al = J Rijhere 48/ R3ere( = 0) (10)
with A = 1 (r and A in arbitrary units) for 26 = 0° (upper
curve) and 26 = 180° (lower curve).

These widths are compared with the approximations
(dashed red lines)

ALY (20 = 180°) ~ [2/BA][1 + (1.03r/ A = 0.7/A

mtegral
Al (26 = 0°) & [2/Gr)][1 + (1.64r/ AV]'* = 1.1/ A,
(11)
1.
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Figure 2

The widths of the profiles (8) for 260 = 0° (upper curves) and 26 = 180°
(lower curves) versus the radius r of the sample, A = 1, r and A in
arbitrary units. (a) A{(é{e\gml black full lines, expression (10); red dashed
lines, approximations (11). (b) A{;\Q\HM black full lines, FWHMs of the
profiles (8); red dashed lines, approximations (12); red chain-dotted line,

the constant 1.03 in (12) is replaced by 1.
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where the constants ¢; = 1.64 (260 = 0°) and ¢; = 1.03 (26 = 180°)
were obtained by fitting the results of (11) to (10) for large
r/A ratios. For small r/A ratios, both expressions (11)
approach the kinematical integral width (3), whereas for large
r/A ratios the integral width of the extinction-corrected
profiles can be expressed as A{i"ft/e\gml = ¢;[2/(3A)]. For inter-
mediate r/A ratios, however, the results of (11) deviate
slightly from the results of (10).

The FWHMs of the profiles, A{;/V{,\HM, are presented as full
black lines in Fig. 2(b). The saw-toothed appearance of the
FWHMs versus r lines is easily explained by the oscillations of
the corresponding intensity distributions [see Fig. 1, Fig. 3(a)
and Ro-02-Fig. 8]. In Fig. 3, the extinction-corrected profiles
(8) (black full lines) are compared with a Gaussian (blue
dashed lines) and a Lorentzian distribution (red dashed lines),
respectively, having the integral width defined by expression
(11) for 26 = 180°. It can be deduced from Fig. 3 that in the
case of back reflection and increasing extinction the Lorent-
zian distribution becomes a fairly good approximation for the
extinction-corrected intensity profile obtained with the ‘pull-

Figure 3

RNere versus ¢ [(units of r)™]. Black full lines: the extinction-corrected
profiles (8). Blue (red) dashed lines: the Gaussian (Lorentzian)
distribution having the integral width defined by expression (11) for

20 = 180°. (a) r/A = 3. (b) r/A = 30.

down procedure’. Bearing in mind that for a Lorentzian
distribution the FWHM is related to the integral width by the
form factor 2/m and that in the case 26 = 0° and large r/A
ratios the maximum of the extinction-corrected profile is
limited to the value I({)ere/(Ipq) = 1/2, it can be concluded
that the width, Ag“;/vf,\HM, of this profile is about the width of the
Lorentzian at 1,(¢)/(I,q) = 1/4. Therefore, it can easily be

shown that for large r/ A ratios

A (20 = 180°) &~ (2/m)[2/(3n][1 + (1.03r/ A)*]/?

= 0.44/A
At (20 = 0°) ~ (2/m)[2/(BP]IL + 3(1.03r/ AY]?
= 0.76/A (12)

(red dashed lines in Fig. 2b). The red chain-dotted line in Fig.
2(b) is obtained by replacing in (12) the constant 1.03 by 1. It is
obvious from the figure that, for 26 = 180° and large r/ A ratios,
the exact FWHM lies between these two approximations.

In Fig. 4, the black full lines represent the profiles for
intermediate Bragg angles calculated according to expression
(9) [Figs. 4(a), (b), (c): 6=85,45,5°,r/A = 3; Fig. 4(d): 6=5°,

0.91 ‘! 0.72

0.46 }-

-3 ¢

Lad

g
(@)

Figure 4

Rere versus ¢ for intermediate Bragg angles. Black full profiles:
calculated according to expression (9). Red dashed lines: pseudo-Voigt
distributions defined by (13) with FWHMs calculated according to (14).
(a)0=85"r/A=3,n=0.95.(b)0=45°,r/A=3,n=0.85.(c) =5 r/A =
3,17=0380.(d) 0=5°r/A=30,n=0.80.
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r/ A =30]. The red dashed lines in the figures are pseudo-Voigt
distributions [see expression (44) in Appendix A], RFY,
defined by

RPV = Rg;}&ere(g = 0)[(1 - n)GN + nLN]7 (13)

where 7 is the mixing parameter giving the proportion of the
Lorentzian contributions. The FWHM of these pseudo-Voigt
distributions, which is equal to the FWHM of the contributing
normalized Gaussian, Gy, and Lorentzian, Ly, is calculated
according to

Al (6) 2 {AGy(26 = 07)}(90 — 6)/90
+ { AT (26 = 180°)16/90. (14)

It is obvious from Figs. 4(a), (b) and (c) that the mixing
parameter 1 depends on the Bragg angle [Figs. 4(a), (b), (¢),
(d): n=10.95, 0.85, 0.80, 0.80] and that — even for 8 = 5° — the
pseudo-Voigt function calculated according to (13) and (14) is
a reasonable approximation for the profiles (9).

2.2.2. Intensity profiles obtained with the w-scanning
technique. It should once more be emphasized that the
profiles defined for intermediate Bragg angles by (9) are only

3. ~0.750
= % =} ext
g 0 s 0.875 R.tpheré
-3 ’ =1 0.000
44.99 45.00 45.01
®
(@)
3q. —-0.997
il 3 “u, . ext
C.» 0 ke 0493 Rsphere
\
\
\
\
\
\
N
Rt
=3 T —=0.000
89.20 89.60 90.00
0]
. ®
Figure 5

Intensity profiles obtained with the w scanning technique. Blue dashed
line: ¢ [um™] versus @ [°]. Black full line: profile (9) calculated with the ¢~
w relation defined by (4) for r/A =30, A =1 pm, A = 0.51 A. Red dashed
line: pseudo-Voigt distribution (13) with the FWHM defined by (15). (a) 6
=45° and n = 0.85. (b) 6 = 89.6° and n = 0.80.

very first approximations proposed in this paper. However,
using these approximations, it can easily be shown that for
intermediate Bragg angles the extinction-corrected w-scan
profile is equivalent in shape to that obtained during the ‘pull-
down procedure’. The profiles differ only in their abscissae
and the dimension of the corresponding variable. The
equivalence is caused by the linearity of the relation between
w and ¢, represented as a blue dashed line in Fig. 5, i.e. in the
range represented in Fig. 5(a), ¢ decreases linearly from +3 x
10~* to —3 x 10~* [A™'] during the  scan from outside to
inside the Ewald sphere. The black full line in Fig. 5(a)
corresponds to the profile (9), calculated with the {—w relation
defined by (4) for r/A =30, A =1 pm, A =0.51 A, 6=45° and
n = 0.85. The red dashed line represents the pseudo-Voigt
distribution (13) with the FWHM defined by

Awthvig = A&k (@)A/sin 26. (15)

From the very good fit between the profile (9) and the pseudo-
Voigt distribution, it can be concluded that (15) is a reasonable
approximation for the FWHM of the extinction-corrected
w-scan profiles.

On the other hand, it should be noted that it is impossible to
observe the ‘closed-form’ profiles, expressions (8), given by
B&C for 260 = 0 and 20 = 180° only, with the w-scanning
technique. Besides the fact that in both cases the reflected
beam coincides with the incident beam, in the — unfeasible —
case 26 = 0°, the reciprocal-lattice point would coincide with
the zero point of the reciprocal lattice, i.e. it would lie on the @
axis. Consequently, the reflected intensity would be constant
during rotation (¢ will be zero for all w). In the vicinity of 26 =
180°, the relation between w and ¢ is no longer linear (blue
dashed line in Fig. 5b). The w-scan profile (black line)
becomes asymmetric and deviates strongly from that obtained
with the ‘pull-down’ procedure, which will be very similar to
that given in Fig. 3(b) for 26 = 180°.

3. Intensity distribution functions for a perfect
spherical crystal. Kinematical diffraction by a triple-
crystal system at a synchrotron-radiation source

In a ‘real experiment’, the incident beam is neither exactly
monochromatic nor exactly parallel. The wavelength spread
and the divergence parallel and normal to the reflection plane
of the primary reflection are caused by the X-ray source and
the monochromator system as well as the diameter of the
sample. The arrangement of the triple-crystal system used
at the synchrotron-radiation source at beamline D3 at
HASYLAB (DESY, Hamburg, Germany) was discussed in
detail in Ro-93a. For simplicity, the monochromator system
was considered in the framework of the kinematical theory, i.e.
it was assumed that the reciprocal-lattice points corresponding
to the ’very thick’ perfect monochromator crystals (I and II in
Fig. 6; see also Ro-93a-Figs. 1 and 2 and corresponding text)
can be represented by dimensionless mathematical points.
Consequently, kinematical diffraction is possible for ¢ = 0 only,
i.e. the reflecting planes of the two monochromator crystals
both have to be exactly in Bragg position. It was shown in
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Ro0-93a that each ray diffracted by the planes of the two
perfect monochromator crystals parallel to the reflection
plane will have its characteristic wavelength, A¥, depending on
the angle 81’,‘”’ between the particular ray and the central ray,

Asy = 2dy sin(6y, + 8N, (16)

where d,, is the interplanar spacing of the reflecting plane of
the monochromator crystals and 6,, is the Bragg angle for the
central ray. The measurements can be performed with the
samples arranged antiparallel (position IIla in Fig. 6) or
parallel (position IIIb) with respect to the second mono-
chromator crystal. Consequently, in the antiparallel arrange-
ment, rays diffracted by the second monochromator crystal
with negative Sl’f’ and smaller wavelength (}\a,“/ <)\5£/1:0) will
correspond to a positive angle, 82 , between the particular ray
and the central ray at the sample and vice versa, i.e. 85 = —5).
The opposite sign is obtained for the parallel arrangement.
The corresponding wavelengths A + §, are therefore related
to the §) according to

A48, = )‘55 = 2d,,sin(0,, F 85) 17)

with the minus (plus) sign corresponding to the antiparallel
(parallel) arrangement.

Furthermore, it was shown in Ro-00b-Appendix A-(30)
that, for a particular setting of the diffractometer angle w and
a particular incident ray with wavelength )»55, divergences 4§,
(normal) and 82 (parallel to the reflection plane), w-scan
profiles of the sample in positions I1la, I1Ib in Fig. 6 can be
calculated, replacing ¢ given in (4) by

{w,8,,8,) = —1/hs + [1/x’§g + |h|* — 2|h| cos$,
x cos(90 — w — &)/ 255172, (18)
taking into account the probability P(8,.8;)ds, d8; for this

particular ray of the beam incident on the first mono-
chromator crystal.

countet

£
= =3

N

I 4
@2 E Qs
! llla
-

!
! I
!
]
]
/
Counter

Figure 6
The arrangement of the triple-crystal system used at beamline D3 at the
synchrotron-radiation source at HASYLAB.

For example, in the case of purely kinematical diffraction
and §, = 0, the total intensity recorded in the counter for a
particular diffractometer angle w has to be evaluated by

(@) = [ Ighere(@, 8;)P(8;) 5, (19)
where I;‘;Em is defined by (1). According to Ro-93a-Fig. 3(a),

the maximum divergence § recorded by a spherical crystal
bathed in the incident beam depends solely on geometrical
factors and is independent of the wavelength

8 = 2 arctan[(s/2 + r)/L], (20)

where s is the vertical dimension of the synchrotron-radiation
source and L is the distance between the source and the
sample (s = 0.11cm and L = 3731 cm at beamline D3 at
HASYLAB, § = 0.00195°). Without the two monochromator
crystals in the beam, in the case that the sample radius r is
much smaller than s, the distribution function P(Si) will be
nearly rectangular in shape, with constant probability for all
the rays with §) < & and zero probability for rays with &) > 8.
In this section, i.e. in the framework of the kinematical theory,
it will be assumed that the rectangular distribution function is
smeared by the monochromator system, caused for example
by imperfections in the crystals or by the fact that the corre-
sponding reciprocal-lattice points are not exactly dimension-
less mathematical points. The results represented in Fig. 7 are
therefore obtained by replacing the rectangular distribution
function by a Gaussian, Pg, in Fig. 7(a) and a Lorentzian
distribution, P;, in Fig. 7(b), having the area, the maximum
value and the integral width of a rectangular distribution:

P(8y) = (1/8) exp[—7(8,/8)°]

PL(83) = (1/9)[1 + (783/8)°T " el

It should be noticed that (19) is not the convolution of the two
distribution functions I&p. . and P. This can easily be
demonstrated by replacing the normalized function f in (1) by
the normalized distribution functions defined in (7). In Fig.
7(a), f is replaced by the Gaussian, I, in Fig. 7(b) by the
Lorentzian distribution, /;. For the sake of comparability of
the width and shapes of the profiles, the intensities of all
profiles in Fig. 7 are divided by the corresponding maximum
value. It is obvious from the figures that the two black profiles
obtained according to (19) for the two sample positions I1la
and IIIb (Fig. 6) differ appreciably in width for the Gaussian
distributions .. and P (Fig. 7a) as well as the Lorentian
distributions (Fig. 7b). The same width, however, would be
obtained for both positions in the case of a convolution,
represented by the red dashed profiles. In the case of Fig. 7(a),
the convolution results in a Gaussian and in the case of Fig.
7(b) in a Lorentzian distribution, with the FWHMs calculable

according to
Avpwin.c = Bal2/(Br)(A/sin20) + 8}/
Awpwpm,. = BL[2/(3r)(%/ sin 26) + §].

On the other hand, according to expression Ro-93b-(6b),

which is based on purely geometrical considerations in reci-
procal space, for a non-absorbing spherical crystal the FWHM

22)

Acta Cryst. (2002). A58, 473—486
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consists of four terms, i.e. Awlyy, the broadening caused by
the divergence, Awiyyy, the broadening caused by the
wavelength spread, Aw;/\i,\HM, the broadening caused by the
crystallite size and Awgyy, the broadening caused by the
mosaicity of the crystal:

geom 5 A r/A )
Awpwiy = TAGrwaM T A0Rvav T A0pwivm T A®rwam

= 485 + S tan O/tan 0, + Ay + nrode
(23)

where 8 is the form factor belonging to the distribution P(S;f),
and 6 and 6,, are the Bragg angles of the sample and the
monochromator, respectively. The plus signs in (23) corre-
spond to the antiparallel (Ila), the minus sign to the parallel
sample position (I11b) in Fig. 6. [It should be remembered that
in the parallel arrangement expression (23) is valid only for
sample reflections whose reciprocal-lattice vectors are equal
to or greater than the lattice vector corresponding to the
monochromator reflections, see Fig. 2(b) in Ro-93b and
corresponding text.]

f
14.224

[}

(%)
Figure 7
Discussion of the profile (19), calculated for the 111 reflection of Si, A =
1.5418 A, radius of the sample, r = 100 um, § = 0.00195°. The intensities
of all profiles are divided by their respective maximum values. Black lines:
profile (19), obtained with P((S}f), defined by the profile (21), and f
replaced by the profile (7). Red dashed profiles: profiles with the FWHM,
expression (22). Red chain-dotted profiles: profiles with the FWHM,
expression (24) and (25), respectively. Blue dashed profile in (a): the
Gaussian distribution with AwSyy = {88 + [8B5(tan 8/ tan 6,,)> +
[2/(Br)(A/ sin20)BPY2. (a) IXD. (0, 83) and P(8%) replaced by Gaus-

! sphere y
sians. (b) [gﬂere((o, 85) and P(Sf,) replaced by Lorentzians.

mosaic

In the case of a perfect crystal, the mosaic spread npwiy 1S
zero. The dashed-dotted red profiles in Fig. 7(b), which
therefore correspond to Lorentzian distributions having the
FWHMs calculated according to

I ~ L
Awpwim = IBLAwintegral

= B,[8(1 + tan 6/tan 6,,) + 2/(3r)(A/sin20)], (24)

coincide with the black full lines, indicating that, in the case
when both distributions, I;‘;ﬂere and P, are Lorentzian,
expression (24) is an excellent approximation for the FWHMs
of the two profiles obtained with (19).

In the case I§},. and P are both Gaussian distributions (Fig.
7a), an excellent agreement between the black profiles and the

dashed-dotted red Gaussian distributions are obtained with

Awfyiy = ﬂGAwigtcgral
= B,{[6(£1 + tan O/tan 8,,)]* + [2/(3r)(1/sin 20)P}/2.
(25)

The blue dashed profile in Fig. 7(a), corresponding to a
Gaussian distribution with

Aoy = {[8B:) + [8Bs(tan 6/tan 6,,)F
+[2/(3r)(A/sin20)B,I*}2,

however, differs appreciably from the black lines, indicating
that it is essential to add the terms Awfyy = £B°8 and
Aw&y linearly.

4. Dynamical diffraction by a double-monochromator
system at a synchrotron-radiation source

The results of §3 are based on the assumption that the reci-
procal-lattice point corresponding to a ’very thick’ mono-
chromator crystal can be represented by a dimensionless
mathematical point. It is obvious from §2.2, however, that,
according to the kinematical extinction theory, even for large
spherical crystals bathed in the incident beam, significant
intensity of the reflected beam is observed in the ¢ range of
about —2/A < ¢ <2/A. The same effect can be expected for a
crystal of any shape, even for a plane parallel plate whose
lateral extension is larger than the cross section of the incident
beam, i.e. for the monochromator crystals. Consequently, the
relation between the divergence and the wavelength will be
more complicated than that given by expressions (16) and
17).

4.1. Dynamical diffraction profile for a thick plane parallel
plate (symmetrical Bragg case). Monochromatic parallel
incident beam

In this section, the discussion is restricted to centrosym-
metric absorbing crystals with unlimited lateral extension, to
situations where the Bragg planes are parallel to the crystal
surface and the incident plane wave is polarized with its
electric vector perpendicular to the reflection plane. For the
symmetrical Bragg case, the monochromatic reflectivity Rpjace
for a thick plane parallel plate can be approximated by
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Table 1

Real and imaginary parts of the structure factors of the Si 000 and Si 220 structure factors.

Extinction lengths and widths correspond to Figs. 8 and 10. See §4 for definitions.

A (A) i 7 hkl F F

A (um) A0, Awgene () ARP, Adene X 10° (A)
1.5418 0.2547 0.3308 000 114.03 2.65 3.2 4.26 —73
220 —69.17 —2.57 53 5.17 88
0.7709 0.0951 0.0841 000 112.75 0.67 6.5 1.05 -9
440 43.34 0.59 17.0 0.81 7
0.5139 0.0445 0.0363 000 112.35 0.29 9.8 0.47 -3
660 —23.59 —0.22 46.9 0.20 1

[Zachariasen, 1945, expressions (3.116), (3.139), (3.179),
(3.181), (3.189); Hirsch & Ramachandran, 1950, expressions
(16), (19)]

Rplate =L- (L2 - 1)1/2
L=+ +I0’—¢g —1+k)

+4(gy — k1M A+ &)

(26)

y = —Fy/IF;| —wAg
g = —F|F|
=F,/F,

Aw=w—0=—¢)\/sin20

In (26), F,, = F;, + iF}, is the complex structure factor of index
h and 0 is the kinematical Bragg angle. In Fig. 8, the profiles of
the fundamental Si 220 reflection (A = 1.542 A, red profile)
and its next harmonics (440, A/2, blue profile; 660, 1 /3, green
profile) are presented versus w — 6. The anomalous-dispersion
corrections for the atomic form factor, f and f”’ of Si (Table 1)
were evaluated with the program ABSORB by Brennan &

1.04 =

R

e 0.5 \
| 4
|
a
\
,,// \ _
0.0 T T T
0 0.0014 0.0029
w-0
1 I |
0 -0.120 -0.239
{=10*
Figure 8

The profiles Rpjae. Red profile: the fundamental Si 220 reflection
calculated for A = 1.542 A. Chain- dotted black profile: the fundamental Si
220 reflection calculated for A = 1.542 A and zero absorption (g=k=f"=
0). Upper x axis: y scale. Middle x axis: Aw = (w — 0) scale [°]. Lowest x
axis: ¢ scale [A 1. Blue profile: Si 440 reflection calculated for A/2. Green
profile: Si 660 reflection calculated for /3.

Cowan (1992). Fig. 8 is equivalent to Fig. 3.2 presented in
Coppens (1992).

The Darwin width, given by Coppens (1992), expression
(C-32),

= (2/m)(1/A)(L/ sin20) = AZP(1/ sin 26), (27)

is equivalent to the angular range of total reflection of the
single-crystal diffraction profile calculated for zero absorption
[g =k =f" = 0; chain-dotted black profile in Fig. 8; according to
(26), for —1 <y < 1, AP =2/(7A) is obtained]. Since the
area under the reflection curve of the profile (26) as well as its
maximum depend on absorption, the same is true for the
integral width as well as for the FWHM. On the other hand, in
the case of zero absorption it is obvious from Fig. 8 that the
FWHM is nearly equivalent to the Darwin width. Using
expression (26), it can easily be shown by means of Mathe-
matica (Wolfram, 1999) that for zero absorption

N

integral —

4Aw A{

mtegral

Aahaing = 3 x 2Y2/2)Aw®

A/sin 20
— (28)
= ALy /sin 26.

It is interesting to compare these results for
A{{ng;’ral ~(0.85/A and AZ Lot =2 0.67/A with the widths
(11) and (12) obtained for a spherical crystal with a large /A
ratio.

Q
H
&
g
Q
2
M,
oM oM P )
(1]

Figure 9
Dynamical diffraction in reciprocal space.
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Caused by the first term of the variable y, in the Bragg case
the value of the scan angle, W enire, cOrresponding to the centre
of the diffraction pattern, y = 0,

chentre = Weentre — 0= [1/(7TA0)])“/SIH 297 (29)

is always greater than the Bragg angle. The corresponding
Coontre = —1/(TA) is negative, i.e. at the centre of the intensity
profile the reciprocal-lattice point lies inside the Ewald sphere.

4.2. Wavelength range of the beam reflected by a thick plane
parallel plate (symmetrical Bragg case). Parallel incident
beam

The wavelength range of the beam reflected by the first
monochromator crystal can easily be deduced from Fig. 9. The
horizontal reflecting planes are parallel to the surface of the
thick plane-parallel crystal plate with unlimited lateral
extension. The reciprocal-lattice vector h, which is normal to
the reflecting planes, connects the zero point of the reciprocal
lattice O with the reciprocal-lattice point H. The vectors M,0
represent wave vectors corresponding to a ray with a parti-
cular angle of incidence, w" = 6,, 4 8). Each of the rays
incident on the first monochromator crystal comprises the
whole range of wavelengths of the continuous spectrum of
the synchrotron-radiation beam. The Ewald spheres corre-
sponding to the particular wavelengths A; = 1/M,0 are
represented by the arcs. ™ = 0,, + 824 , the angle of incidence,
is identical for the different wave vectors M;0. According to
(26), the diffracted intensity will depend on the particular
wavelength A; and the corresponding ¢;. Considering the
triangles OM;H (M\H = 1/); 4+ ¢, M;0 =1/i;, OH = |h|),
the relation A, = 2(|h|sin @™ + ¢,)/(|h|*> — ¢?) can easily be
obtained. The wavelength range AL = A, — A, corresponding
to the range of total reflection, —1 <y < 1,

AXP = 4d3,/(mA,) = MAWP /tan b)), (30)

Pia.- ll‘::=:="
1.5416 1.5418
A

Figure 10

The surface plot of the reflectivity, Rpla‘e(SM , A), calculated for the Si 220
reflection by means of Mathematica. x axis: 1.5414 < 1 < 1.5420 A;y axis:
—0.002 < 8 < 0.002° z axis: Ryje(8), A).

is obtained, bearing in mind that ¢? < |k|?* and inserting for
& =—1/(wA,) = 1/(wA,) and & =+1/(wA,) — 1/(7A).
This result is identical with Coppens’s (1992) expression (3.4).
The centre of the wavelength range, ASi"", corresponding to
y =0, is displaced from the wavelength, A su» defined in (16) by

A)"cemre = )"gf"’mre - )"62" = _Zd%/l/(nAO) (31)
In Fig. 10, a surface plot of the reflectivity, R ,.(8), 1), for
—0.002 < 8! <0.002° and 1.5414 < ) < 1.5420 A is shown
for the Si 220 reflection. The corresponding values for AAP

1.0 A+
0.5 -
0.0 7 - |
1.5415 1.5418 1.5421
(@)
1.0 A
0.
0. )
1.5421
1.0 - .
0.5 - ;' o Z
0.0 //k{\ .....
1.541S5 1.5418 1.5421
A
(c)

Figure 11

The wavelength distribution of the doubly diffracted ray. Full line:
P(8M,)) defined in equation (32). Dashed lines: the reflectivities for
single diffraction, Ry,.(8)', A), for Si 220. (a) Zero offset. (b) 2-c1 =
0.001°. (¢) c2-c1 = 0.002°.
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and AA,.. are given in Table 1. It is obvious from the figure
that for each particular angle 8;‘,4 the wavelength A defined
by (16) is now replaced by a wavelength distribution

Rijaie (8", 1). The centre of the corresponding profile, AS§"®, i
displaced from Az by the constant term (31). The Wldth "of the
wavelength range (30), on the other hand, is constant for all
M.

' Considering the diffraction by the second monochromator
crystal, it is essential to know the exact direction of the rays
diffracted by the first monochromator. The direction of these
rays can be deduced from Fig. 9. According to the dynamical

h=1.5418

-1-1-1
ITb

theory (Section 28c in von Laue, 1960), the tangential
components OP; of the external (vacuum) and internal
(crystal) wave vectors must be equal, i.e. for a particular index
i, the points O, H and Q; are lying on a common normal to the
crystal surface. The points Q; are therefore determined by this
normal and the radius of the corresponding Ewald sphere,
1/X,. In the symmetrical Bragg case, therefore, the angles at O
and Q, in the triangle OM;Q; are equal, i.e. for a particular
divergence 8[’)” , for all wavelengths composing this ray, the
angle of reflection is equal to the angle of incidence,
oM = 9M+8£4. As a consequence, as long as the second
monochromator is exactly parallel to the first one, all
rays reflected by the first monochromator crystal will
meet the diffraction condition of the second mono-
chromator. The wavelength distribution of the doubly
diffracted ray (full line in Fig. 11a) is determined by
the product of the reflectivities for single diffraction
(dashed lines in Fig. 11). It is obvious from the figure
that the FWHM of the full line in Fig. 11(a) is about
the same as that of the chain dotted line. The two
profiles, however, differ appreciably in shape and in

[ T T T T 1 I |

14.2177 14.2450 14,2263 14.2363 23.6529

113
Ila

23.6849

004
11la

their integral widths.

To avoid higher-order contamination of the mono-
chromated beam, a small offset from parallelism can
be used to take advantage of the different wavelength
ranges, AA”, and the different displacements, A opyes
of the higher-order reflections. The effect on the
fundamental Si 220 reflection is shown in Figs. 11(b)

I | T ! I | I ! | I

: and 11(c). The full line represents the wavelength

23.6602 23.6777 28.0650 28.1001 34.5710 34.6142
distribution of the doubly reflected beam
. 224 ! P(8) 1) = Ryyie(8)" = €1, MRpio(8, = €2, 2) (32)
for offsets ¢2—cl = 0.001° and c2—cl = 0.002°,
respectively. It should be noted that the wavelength
corresponding to the maximum of the profile is shifted
T T T T T T T T T T 1 ] :
S ee i ilas i o i s to larger values. It is clear from the figure that the

044
Ila

shape as well as the width of the wavelength profile
strongly depend on the fine tuning of the parallel
orientation of the second monochromator crystal.

5. Intensity profile of a perfect spherical crystal

47.4900 53.3742 53.4422 57.0680
0.

533
Ila |

: at a synchrotron-radiation source. Comparison
with experimental profiles

o Taking into account the results of the dynamical
theory, after triple diffraction by two monochromator
crystals and a spherical sample, the ‘exact’ total
intensity obtained for a particular diffractometer
angle, w, with a divergent synchrotron-radiation beam

I T T T T 1 r T T T T 10.00 T T T
63.8057 68.4883 68,6083 0.0

Figure 12

15 observed and theoretical intensity distributions. Red crosses: measured with
1.5418 A. Black profiles: estimated according to
expression (33) for the perfect spherical Si sample with radius r = 84 um with zero
offset. The Bragg reflections are marked by the indices 4kl and the experimental
position Illa or IIIb defined in Fig. 6. Last diagram: the 15 experimental (red full
circles) and theoretical (black circles) FWHMs [°] versus the Bragg angle [°].

synchrotron radiation at A =

1 has to be evaluated by
I(a)) - 0q ngf)(ktlere (33)

where R:’;‘lﬂm(w, &) and P(8), 1) are defined by
expressions (9) and (32). It should be noted that,
firstly, the three profiles involved in (33) are different
in shape and, secondly, they are neither Gaussian nor

Lorentzian. Furthermore, as discussed in §3, the

, 8)P(85)P(8Y, 1) d d5S,
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probability distribution P((Si) for the particular rays of the
beam involved in the triple diffraction process is not known at
all.

On the other hand, if all constituents were Lorentzian in
shape, the FWHM of the profile obtained with (33) could be
expressed as

Aok = B, [8(£1 + tan 6/tan 6,,) + (ALP /A) tan 6
+ Awh ] (34)

integral

and if all distribution functions involved in (33) were Gaussian
in shape, the FWHM of the Bragg reflection profile, AWy
is given by

A=1.0 A=13 . A=1.54
.025 < g :
i 1 ]
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Figure 13

FWHMs [°] of a perfect spherical Si crystal with radius of 84 um versus the Bragg angle [°] for six different wavelengths. Black full circles: experimental
FWHM:s. Red crosses: FWHMs corresponding to the ‘Lorentzian’ expression (34). Blue crosses: FWHMs corresponding to the ‘Gaussian’ expression
(35). (a) Dynamical term neglected, i.e. (AAP /1) tan6 = 0. (b) Dynamical term taken into account, i.e. (AAP /A)tan6 # 0.
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AwSyi = Boll8(£1 + tan 6/tan 6,,))* + [(AL” /1) tan 6]
+ Aol gyl 1. (35)

integral

In the following, the theoretical FWHMs will be compared
with FWHMs of experimental profiles of an etched perfect
spherical Si crystal with a radius of 84 um. The measurements
at six different wavelengths in the Bragg angle range 6 < 70°
were performed at beamline D3 at HASYLAB, DESY? under
the same conditions and in the same manner as described in
Rossmanith et al. (1993). The 145 observed profiles are given
as red crosses in Fig. 12 (14 profiles at A = 1.5418 A), only part
of which is published here.® A first analysis of the data, based
on the method introduced in Ro-93a and Ro-93b, i.e. based on
(23), was performed by Schmidt (1995). In the present paper,
the experimental FWHMs, given as black full circles in Fig. 13
and as red full circles in the corresponding diagrams of Fig. 12
and the deposit material, were re-determined fitting to the
experimental data split-pseudo-Voigt distributions, defined by
(47) and shown in Fig. 14(b). It was found that the observed
X-ray synchrotron profiles can be well approximated by the
symmetrical pseudo-Voigt (Fig. 14a) distribution, although
(33) is not the convolution of Gaussian and Lorentzian func-
tions. Consequently, an analysis of the Gaussian and Lorent-
zian components of the related Voigt functions (see Appendix
A), which is very similar in shape to the pseudo-Voigt distri-
bution, is senseless and will not be considered in the present
paper. Attention will be restricted to the ‘exact’ expression
(33).

However, as a first step it will be assumed that all distri-
bution functions involved in (33) are either Lorentian or
Gaussian in shape, i.e. in Fig. 13(b) (lower six diagrams), the
experimental widths are compared with the FWHMs corre-
sponding to (34) and (35), given as red and blue crosses,
respectively. In Fig. 13(a) (upper six diagrams), according to
the kinematical theory presented in §3, the dynamical term,
(AAP/))tan 6, is neglected. The only parameter that is
unknown in the expressions for the profile width is the integral
width corresponding to the divergence of the incident beam, §.
This parameter was estimated for each wavelength, fitting the
theoretical FWHMSs to the experimental ones. The corre-
sponding values for the FWHM, 5{V"™, obtained in this way,
are given in Table 2. It is interesting to note that the purely
kinematical approach results in very similar parameters 8¢y ™
for the Lorentzian and Gaussian distribution functions,
whereas the Gaussian FWHMs are appreciably larger in the
case corresponding to Fig. 13(b). Furthermore, it is clearly
visible that §{"™ varies with the wavelength. The physical
significance of the different results obtained for 8¢y can be
seen from Fig. 15. The black rectangle, having the width §
defined in (20), represents the rectangular normalized distri-

% The measurement was performed in 1994. The author is indepted to K.
Eichhorn, G. Kumpat, R. Kurtz and G. Ulrich for valuable support during the
measurement.

3 The rest of Fig. 12 has been deposited (19 profiles at A = 1.3 A;29 profiles at
A =1.0 A; 19 profiles at A = 0.7106 A; 23 profiles at A = 0.5607 A; 41 profiles at
A =03 A) and is available from the IUCr electronic archives (Reference:
MMO0026). Services for accessing these data are described at the back of the
journal.

bution P(Bg) of the beam divergence introduced in §3. The
blue (red) profiles in the Fig. 15(c) show the normalized
Gaussian and Lorentzian distribution functions defined in
(21), whereas the normalized Gaussian (blue) and Lorentzian
(red) distribution functions given in Figs. 15(a) and 15(b) show
the P(Sﬁ) defined by widths given in Table 2, corresponding to
Figs. 13(a) and 13(b), respectively. It is obvious from Figs.
15(a) and 15(b) that the maxima of the normalized Gaussians
and Lorentzians are no longer equal to the height of the
rectangle. Whereas the reduction of the number of photons in
the maxima can readily be explained, for example, by wave-
length-dependent air scattering of the photons of the incident
beam, it is difficult to find physically sound reasons for the
enhancement of the photons in the forward direction in the
case of some of the Gaussians. However, although equations
(34) and (35) are valid only in the case the experimental Bragg
intensity profiles as well as the profiles involved in expression
(33) are all Gaussian or all Lorentzian in shape, fairly good
agreement between the experimental and theoretical FWHMs

0.5

1
&
o
S

0.5 7

0.0 T T T T |
-4 0

-

Figure 14

(a) The pseudo-Voigt function calculated for the mixing parameters 1 =
0.0 (blue, purely Gaussian), 0.1,0.2, ..., 0.9, 1.0 (red, purely Lorentzian),
X sc_a}e in FWHM units. (b) The normalized split-pseudo-Voigt function
PV calculated for Axpywpp<o) = 0.5 and Axpywnoo) = 1, and mixing
parameters, 1, ., = 0.4 and n,., = 0.8, x scale in Axpyypx<g) UnNits.
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Table 2
SEWHM corresponding to Figs. 13, 15(a) and 15(b).

exp

L: all distributions involved in equation (33) are Lorentzian in shape; G: all
distributions involved in equation (33) are Gaussian in shape.

BSXHM(G) X 104

(AAP /X )tan@ =0 (AAP/A)tan® # 0

Fig. 13(a) Fig. 13(b)
*(A) L G L G
0.3 185 183 159 17.8
0.5607 17.8 17.8 137 16.9
0.7106 17.8 17.8 12.7 16.0
1.0 21.0 20.7 13.4 17.8
13 28.0 282 19.7 26.3
1.5418 27.1 272 159 225

is obtained for both distributions, with and without taking into
account the dynamical term (AL /1) tan 6. It can therefore be
concluded that the four expressions can be used for the
evaluation of approximate FWHMs with comparable success.

In the second step of the present investigation, in Fig. 12
and in the deposit material, the observed profiles (red crosses)
are compared with the profiles (black lines) obtained with
expression (33). In each diagram, the Bragg reflection is
marked by the indices 4kl and the experimental position, I1la
or I11b defined in Fig. 6. The step widths of the experimental
scans, Awy,,, given in Table 3, can also be deduced from the
w-scan width (limits of the x axis given in each diagram) and
the number of steps. The last diagrams in Fig. 12 and in the
deposit material show the FWHMs versus the Bragg angle for
the particular wavelength. The theoretical (black) profiles in
each diagram were calculated for the perfect spherical Si
sample with radius r = 84 pm and the Si 111 double mono-
chromator system, ie. Rj..(w,8)) is defined by (9) and
P(8M, ) was estimated according to (32) for the parallel
arrangement with zero offset, with F’ and F” given in Table 3.
P(83), the only unknown distribution function in (33), was
fitted to the experimental data, i.e. for each particular wave-
length one distinct pseudo-Voigt distribution, defined by the
FWHM and the mixing parameter 7 given in Table 3, was used
for the calculation of the theoretical profiles (33). It is obvious
from Fig. 12 and the deposited material that, apart from small
Bragg angles, the theoretical distributions obtained with this
method are good estimates for the observed Bragg intensity
reflections. In Fig. 15(d), the various pseudo-Voigt estimates
obtained for P(Sj) for the different wavelengths are compared
with the rectangular distribution P(8IS,) discussed in §3. It
should be noticed that the mixing parameter »n is small for
the smallest wavelength (see Table 3), i.e. the corresponding
distribution P(8§) obtainegi by the fitting process is nearly
Gaussian. For A = 1.5418 A, on the other hand, the pseudo-
Voigt distribution is nearly Lorentzian. It is obvious from Fig.
15 that for all three models, the Gaussian and Lorentian as
well as the ‘exact’ model, the integral widths of the distribu-
tions P(SIS,), obtained by the fitting process, differ from that
defined by (20), being larger in most cases, all having,
however, the same order of magnitude.

For small Bragg angles, the experimental profile shapes and
widths differ appreciably from those obtained with the ‘exact’
expression (33). Especially for the 111 reflection, measured in
the position 1110, for all wavelengths the observed distribution
functions are more Lorentzian in shape and have larger
FWHMs than the calculated ones. (For A = 0.3 A, the width of
the reflection is smaller than the step width of the measure-
ment, the profile was not observable, see Fig. 12 deposit
material.) For the 111 reflection, the Bragg angle of the
monochromator crystals is equal to that of the sample.
Consequently, for the position II1b, the first terms in (34) and
(35) are zero. The theoretical profile is determined by the
distribution functions R%...(w,85) and P(8), 1) only, ie. it
depends on the offset from parallelism of the two mono-
chromator crystals. The profiles presented in Fig. 12 were
calculated for zero offset, whereas the experiment was
performed with a small but unknown offset angle (the inten-
sity incident on the sample was reduced to about }). However,
comparison of 111 profiles calculated for position IIIb for
different offset angles (Fig. 16: red crosses: measured with
synchrotron radiation at A = 1.5418 A; black profile: c2—cl =

1

S 0.0039
3,
(a)

/
T T 1 I T
-0.0039 5 0.0039 -0.0039 5 0.0039
P P

(e) (d)

Figure 15

The probability distribution P(Sg). In all diagrams, the black rectangular
normalized distribution corresponds to the profile discussed in §3, i.e. the
width § = 0.00195° of the rectangle is defined by expression (20). (a) and
(b) Red (blue) profile: normalized Lorentzian (Gaussian) distributions
corresponding to Figs. 13(a) and 13(b), respectively, with SEVHM given for
the various wavelengths in Table 2. (¢) Red (blue) profile: normalized
Lorentzian (Gaussian) defined in equation (21). (d) Normalized pseudo-
Voigt distribution functions corresponding to Fig. 12 and deposit

material, with 5g3"™ and 7 given for the various wavelengths in Table 3.
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Table 3
The real and imaginary parts of the Si 000 and Si 111 structure factors, §
experimental step width, Aw,

exp

step>

Beamline D3 at HASYLAB/DESY, Si 111 double monochromator: a = 5.43 A.

FWHM

, and the mixing parameter 7 of the pseudo-Voigt distribution, P((Slf), and the
corresponding to Fig. 12 and the deposit material.

% (A) Fy F Fiy

0.3 112.069 0.092 —58.094
0.5607 112.418 0.349 —58.337
0.7106 112.655 0.570 —58.503
1.0 113.140 1.136 —58.842
1.3 113.647 1.903 —59.196
1.5418 114.030 2.646 —59.464

0.0, equal with the corresponding profile in Fig. 12; green
profile: ¢2—cl = 0.001°; blue profile: c2—c1 = 0.002°) shows
that the calculated intensity distribution — the shape as well as
the width — is only marginally modified by the offset of 0.001°.
Even in the case of the large offset angle, however, which
would drastically reduce the intensity incident on the sample
(see Fig. 11c), the theoretical profile does not fit the observed
data, indicating that there is obviously an additional broad-
ening effect which was neglected [§, = 0 in expressions (18)
and (19)] or not considered (absorption, TDS etc.) during the
derivation of (33). Broadening of the profiles can additionally
be expected in the case of imperfections in the mono-
chromator and/or sample crystals, which would modify the
distributions P(8)’, 1) and R3Y....(w, 8;). Last but not least, the
kinematical approximations (8) and (9) for the profile shape of
the intensity distribution RgY,.(, &) may also be capable of
improvement.

6. Conclusions

Expressions for the theoretical profiles observed in the ‘real
experiment’ were derived, considering the diffraction by the
double monochromator system in the framework of the
dynamical theory and the diffraction by the spherical perfect

A=1.5418

14,2363

14,2297

14.2263 14.2330
o

Figure 16 .
Observed and theoretical intensity distributions of the 111 reflection,
position II1b. Red crosses: measured with synchrotron radiation at A =
1.5418 A. Black (green, blue) profile: calculated according to expression
(33) for the perfect spherical Si sample with radius r = 84 pum with zero
offset (0.001°, 0.002° offset angle).
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crystal sample in the framework of the kinematical extinction
theory. It was shown that satisfactory agreement between
theoretical and observed profile shapes can be obtained for
reflections with intermediate and large Bragg angles, i.e. for
intensity profiles whose width is dominated by the two
wavelength-spread-dependent  terms, (AA°/A)tané and
(AAP/))tan 6. An exact evaluation of the profiles, however, is
not possible, because at least the probability distribution,
P((S;f), of the divergent rays of the incident beam involved in
the triple-crystal diffraction is not known. It turned out that
distinct pseudo-Voigt distributions with wavelength-depen-
dent FWHMs and mixing parameters were necessary to fit the
experimental profiles. The profiles, P(8§), obtained with this
fitting procedure are similar to those obtained in the two cases,
when all the profiles involved in the diffraction process were
either Lorentzian or Gaussian in shape. In addition, the
agreement between the FWHMs of the ‘exact’ theoretical
intensity profiles (33) and the experimental widths is
comparable to that obtained with the approximations (34) and
(35), replacing all profiles involved in the diffraction process
by either Gaussians or Lorentzians, having the same area and
the same integral width as the component distributions.

APPENDIX A
The Voigt and pseudo-Voigt functions

The following symbols will be used in the Appendix:
Ax{megm, integral width of the distribution i
Axiymy FWHM of the distribution i
Bi = Axfwim/ AXipegrar form factor of the distribution i.
The convolution of two distribution functions f and g is
defined by
+o0
h(x)= [ f(x)glx —x)dx". (36)
—00
(a) If f and g are both normalized Gaussian distributions Gy
defined by
GN = (I/Axigtegral)G (37)
with
G= eXp[_n(x/Axgtegral)z]

1

then & is also Gaussian with an integral width given by
(Langford, 1978)
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Axihntcgral = [(Ax{megral)2 + (Axfntegral)z]l/z‘ (38)
The form factor of a Gaussian distribution results in
Bs =2(In2/m)'/* = 0.93943. (39)

(b) If f and g are both normalized Lorentzian distributions Ly
defined by

Ly = (1) Axigegra) (40)
with
L =1+ (x/ Axipiegra) T
then 4 is also Lorentzian with an integral width given by

Axh = A)‘Jitmegra] + Axigntegra]' (41)

integral —
The form factor of a Lorentzian distribution results in
B, =2/m = 0.63662. (42)

(c) If f is Lorentzian and g is Gaussian then h is a Voigt
distribution V with an integral width given by

Ax'v = Ax?ntegral exp[—(l /ﬂ)(Ax{;ltegral/Axfntegral)z]

integral —
-1
1 Ax{n egra.
X [1—erf( — el ) | (43)
7T1/2 Aximegral
The Voigt function is very similar in shape to the normalized

pseudo-Voigt function, PV,, defined by (Parrish, 1992,
expression 2.3.3.15)

PVy =10 —=nGy+nLy =[1 —n)BsG + nB L]/ Axpwum,
(44)
where 7 is the mixing parameter giving the proportion of

the Lorentzian contribution, 0 <7 <1 and AxbYuy =
AxCyig = AxEwiv = AXpwiy- It can easily be shown that

Bpv = a- 77)/3(; +nB;. (45)
Therefore it follows that
Axivmegral ~ Axil;\t/egral = AXE&HM/IBP\h (46)

i.e. refined n and Axgpyyy Of a fitted experimental profile can
be related by a polynomial expansion (Hastings et al., 1984) to
the widths of the Lorentzian and Gaussian components of
the Voigt function. The pseudo-Voigt function, shown for
different n in Fig. 14(a), is therefore frequently used to fit

synchrotron-radiation profiles. Peak asymmetry can be incor-
porated by a normalized split-pseudo-Voigt function PV;‘,’lit
(Fig. 14b) consisting of two halves, PV _, and PV, _,, with
different widths, AXpwimi<g) 8nd AXpwpmvso), and mixing
parameters, 7,_, and 7,.,, for the left and right side, respec-
tively, but with a common maximum value PV,S\}’m(x =0):

PV (x <0) = 2PV y(x = 0)/[PVy ,o(x = 0)
+ PV o(x = 0O)}PVy (47)
PV (x> 0) = (2PVyy ,o(x = 0)/[PVy o(x = 0)
+ PV ao(x = 0IPVy 10
PV (x = 0) = 2PV o o(x = 0PV o(x = 0)/[PVy ,o(x = 0)
+ PVN,x>(J(x = 0)].
The FWHM and the integral width are obviously given by

s—PV
Axpwam = (AXFWHM(X<0) + AXFWHM(X<O))/ 2

Axi by =1/PV(x = 0).

integral —

(48)
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